/* * Copyright (c) 2019 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "keys.h" #include "../config/config.h" #include "../gfx/di.h" #include "../gfx/gfx.h" #include "../gfx/tui.h" #include "../hos/pkg1.h" #include "../hos/pkg2.h" #include "../hos/sept.h" #include "../libs/fatfs/ff.h" #include "../mem/heap.h" #include "../mem/mc.h" #include "../mem/sdram.h" #include "../sec/se.h" #include "../sec/se_t210.h" #include "../sec/tsec.h" #include "../soc/fuse.h" #include "../soc/smmu.h" #include "../soc/t210.h" #include "../storage/emummc.h" #include "../storage/nx_emmc.h" #include "../storage/sdmmc.h" #include "../utils/list.h" #include "../utils/sprintf.h" #include "../utils/util.h" #include "key_sources.inl" #include "../libs/fatfs/diskio.h" #include extern bool sd_mount(); extern void sd_unmount(); extern int sd_save_to_file(void *buf, u32 size, const char *filename); extern hekate_config h_cfg; u32 _key_count = 0; sdmmc_storage_t storage; sdmmc_t sdmmc; emmc_part_t *system_part; emmc_part_t *prodinfo_part; #define SECTORS_IN_CLUSTER 32 #define PRODINFO_SIZE 0x3FBC00 #define BACKUP_NAME_EMUNAND "sd:/prodinfo_emunand.bin" #define BACKUP_NAME_SYSNAND "sd:/prodinfo_sysnand.bin" static u8 temp_key[0x10], bis_key[4][0x20] = {0}, device_key[0x10] = {0}, new_device_key[0x10] = {0}, keyblob[KB_FIRMWARE_VERSION_600 + 1][0x90] = {0}, keyblob_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0}, keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0}, package1_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0}, // master key-derived families master_kek[KB_FIRMWARE_VERSION_MAX + 1][0x10] = {0}, master_key[KB_FIRMWARE_VERSION_MAX + 1][0x10] = {0}; LIST_INIT(gpt); // key functions static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); }; static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed); bool dump_keys() { display_backlight_brightness(100, 1000); gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); gfx_print_header(); gfx_printf("%kGetting bis_keys...\n", COLOR_YELLOW); u32 retries = 0; tsec_ctxt_t tsec_ctxt; emummc_storage_init_mmc(&storage, &sdmmc); // Read package1. u8 *pkg1 = (u8 *)malloc(0x40000); emummc_storage_set_mmc_partition(&storage, 1); emummc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); if (!pkg1_id) { EPRINTF("Unknown pkg1 version."); return false; } bool found_tsec_fw = false; for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32)) { if (*pos == 0xCF42004D) { tsec_ctxt.fw = (u8 *)pos; found_tsec_fw = true; break; } } if (!found_tsec_fw) { EPRINTF("Failed to locate TSEC firmware."); return false; } tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR); tsec_ctxt.pkg1 = pkg1; tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size; // u32 MAX_KEY = 6; // if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) // { // MAX_KEY = pkg1_id->kb + 1; // } if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) { se_aes_key_read(12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10); } //get_tsec: ; u8 tsec_keys[0x10 * 2] = {0}; if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) { u8 *tsec_paged = (u8 *)page_alloc(3); memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size); tsec_ctxt.fw = tsec_paged; } int res = 0; mc_disable_ahb_redirect(); while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) { memset(tsec_keys, 0x00, 0x20); retries++; if (retries > 15) { res = -1; break; } } free(pkg1); mc_enable_ahb_redirect(); if (res < 0) { EPRINTFARGS("ERROR %x dumping TSEC.\n", res); return false; } // Master key derivation if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) { se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot) se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]); se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks) se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source); } u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1); u8 keyblob_mac[0x10] = {0}; u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1), FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)}; se_aes_key_set(8, tsec_keys, 0x10); se_aes_key_set(9, sbk, 0x10); for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++) { se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk) se_aes_key_set(7, keyblob_key[i], 0x10); se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) if (i == 0) { se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) se_aes_crypt_block_ecb(7, 0, new_device_key, per_console_key_source_4x); } // verify keyblob is not corrupt emummc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block); se_aes_key_set(3, keyblob_mac_key[i], 0x10); se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0); if (memcmp(keyblob_block, keyblob_mac, 0x10)) { EPRINTFARGS("Keyblob %x corrupt.", i); gfx_hexdump(i, keyblob_block, 0x10); gfx_hexdump(i, keyblob_mac, 0x10); continue; } // decrypt keyblobs se_aes_key_set(2, keyblob_key[i], 0x10); se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10); memcpy(package1_key[i], keyblob[i] + 0x80, 0x10); memcpy(master_kek[i], keyblob[i], 0x10); se_aes_key_set(7, master_kek[i], 0x10); se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source); } free(keyblob_block); u32 key_generation = 0; if (pkg1_id->kb >= KB_FIRMWARE_VERSION_500) { if ((fuse_read_odm(4) & 0x800) && fuse_read_odm(0) == 0x8E61ECAE && fuse_read_odm(1) == 0xF2BA3BB2) { key_generation = fuse_read_odm(2) & 0x1F; } } if (_key_exists(device_key)) { if (key_generation) { se_aes_key_set(8, new_device_key, 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, new_device_key_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]); se_aes_key_set(8, master_key[0], 0x10); se_aes_unwrap_key(8, 8, new_device_keygen_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]); se_aes_crypt_block_ecb(8, 0, temp_key, temp_key); } else memcpy(temp_key, device_key, 0x10); se_aes_key_set(8, temp_key, 0x10); se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10); // kek = generate_kek(bkeks, devkey, aeskek, aeskey) _generate_kek(8, bis_kek_source, temp_key, aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10); memcpy(bis_key[3], bis_key[2], 0x20); } emummc_storage_set_mmc_partition(&storage, 0); // Parse eMMC GPT. nx_emmc_gpt_parse(&gpt, &storage); // Find PRODINFO partition. prodinfo_part = nx_emmc_part_find(&gpt, "PRODINFO"); if (!prodinfo_part) { EPRINTF("Failed to locate PRODINFO."); return false; } se_aes_key_set(8, bis_key[0] + 0x00, 0x10); se_aes_key_set(9, bis_key[0] + 0x10, 0x10); gfx_printf("%kGot keys!\n", COLOR_GREEN); char serial[15]; readData((u8 *)serial, 0x250, 15, NULL); gfx_printf("%kCurrent serial:%s\n\n", COLOR_BLUE, serial); return true; } bool erase(u32 offset, u32 length) { u8 *tmp = (u8 *)calloc(length, sizeof(u8)); bool result = writeData(tmp, offset, length, NULL); free(tmp); return result; } bool writeSerial() { const char *junkSerial; if (!emu_cfg.enabled || h_cfg.emummc_force_disable) { junkSerial = "XAW00000000000"; } else { junkSerial = "XAW00000000001"; } return writeData((u8 *)junkSerial, 0x250, 14, NULL); } bool incognito() { gfx_printf("%kChecking if backup exists...\n", COLOR_YELLOW); if (!checkBackupExists()) { gfx_printf("%kI'm sorry Dave, I'm afraid I can't do that...\n%kWill make a backup first...\n", COLOR_RED, COLOR_YELLOW); if (!backupProdinfo()) return false; } gfx_printf("%kWriting junk serial...\n", COLOR_YELLOW); if (!writeSerial()) return false; gfx_printf("%kErasing client cert...\n", COLOR_YELLOW); if (!erase(0x0AE0, 0x800)) // client cert return false; gfx_printf("%kErasing private key...\n", COLOR_YELLOW); if (!erase(0x3AE0, 0x130)) // private key return false; gfx_printf("%kErasing deviceId 1/2...\n", COLOR_YELLOW); if (!erase(0x35E1, 0x006)) // deviceId return false; gfx_printf("%kErasing deviceId 2/2...\n", COLOR_YELLOW); if (!erase(0x36E1, 0x006)) // deviceId return false; gfx_printf("%kErasing device cert 1/2...\n", COLOR_YELLOW); if (!erase(0x02B0, 0x180)) // device cert return false; gfx_printf("%kErasing device cert 2/2...\n", COLOR_YELLOW); if (!erase(0x3D70, 0x240)) // device cert return false; gfx_printf("%kErasing device key...\n", COLOR_YELLOW); if (!erase(0x3FC0, 0x240)) // device key return false; gfx_printf("%kWriting client cert hash...\n", COLOR_YELLOW); if (!writeClientCertHash()) return false; gfx_printf("%kWriting CAL0 hash...\n", COLOR_YELLOW); if (!writeCal0Hash()) return false; gfx_printf("\n%kIncognito done!\n\n", COLOR_GREEN); return true; } u32 divideCeil(u32 x, u32 y) { return 1 + ((x - 1) / y); } void cleanUp() { h_cfg.emummc_force_disable = emummc_load_cfg(); //nx_emmc_gpt_free(&gpt); //emummc_storage_end(&storage); } static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) { if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) return; se_aes_key_set(ks, master_key, 0x10); se_aes_unwrap_key(ks, ks, kek_seed); se_aes_unwrap_key(ks, ks, key_source); if (key_seed && _key_exists(key_seed)) se_aes_unwrap_key(ks, ks, key_seed); } static inline u32 _read_le_u32(const void *buffer, u32 offset) { return (*(u8 *)(buffer + offset + 0)) | (*(u8 *)(buffer + offset + 1) << 0x08) | (*(u8 *)(buffer + offset + 2) << 0x10) | (*(u8 *)(buffer + offset + 3) << 0x18); } bool readData(u8 *buffer, u32 offset, u32 length, void (*progress_callback)(u32, u32)) { if (progress_callback != NULL) { (*progress_callback)(0, length); } bool result = false; u32 sector = (offset / NX_EMMC_BLOCKSIZE); u32 newOffset = (offset % NX_EMMC_BLOCKSIZE); u32 sectorCount = divideCeil(newOffset + length, NX_EMMC_BLOCKSIZE); u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE); u32 clusterOffset = sector % SECTORS_IN_CLUSTER; u32 sectorOffset = 0; while (clusterOffset + sectorCount > SECTORS_IN_CLUSTER) { u32 sectorsToRead = SECTORS_IN_CLUSTER - clusterOffset; if (disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorsToRead) != RES_OK) goto out; sector += sectorsToRead; sectorCount -= sectorsToRead; clusterOffset = 0; sectorOffset += sectorsToRead; if (progress_callback != NULL) { (*progress_callback)(sectorOffset * NX_EMMC_BLOCKSIZE, length); } } if (sectorCount == 0) goto done; if (disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorCount) != RES_OK) goto out; memcpy(buffer, tmp + newOffset, length); done: result = true; if (progress_callback != NULL) { (*progress_callback)(length, length); } out: free(tmp); return result; } bool writeData(u8 *buffer, u32 offset, u32 length, void (*progress_callback)(u32, u32)) { if (progress_callback != NULL) { (*progress_callback)(0, length); } bool result = false; u32 initialLength = length; u8 *tmp_sec = (u8 *)malloc(NX_EMMC_BLOCKSIZE); u8 *tmp = NULL; u32 sector = (offset / NX_EMMC_BLOCKSIZE); u32 newOffset = (offset % NX_EMMC_BLOCKSIZE); // if there is a sector offset, read involved sector, write data to it with offset and write back whole sector to be sector aligned if (newOffset > 0) { u32 bytesToRead = NX_EMMC_BLOCKSIZE - newOffset; u32 bytesToWrite; if (length >= bytesToRead) { bytesToWrite = bytesToRead; } else { bytesToWrite = length; } if (disk_read_prod(tmp_sec, sector, 1) != RES_OK) goto out; memcpy(tmp_sec + newOffset, buffer, bytesToWrite); if (disk_write_prod(tmp_sec, sector, 1) != RES_OK) goto out; sector++; length -= bytesToWrite; newOffset = bytesToWrite; if (progress_callback != NULL) { (*progress_callback)(initialLength - length, initialLength); } // are we done? if (length == 0) goto done; } // write whole sectors in chunks while being cluster aligned u32 sectorCount = length / NX_EMMC_BLOCKSIZE; tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE); u32 clusterOffset = sector % SECTORS_IN_CLUSTER; u32 sectorOffset = 0; while (clusterOffset + sectorCount >= SECTORS_IN_CLUSTER) { u32 sectorsToRead = SECTORS_IN_CLUSTER - clusterOffset; if (disk_write_prod(buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorsToRead) != RES_OK) goto out; sector += sectorsToRead; sectorOffset += sectorsToRead; sectorCount -= sectorsToRead; clusterOffset = 0; length -= sectorsToRead * NX_EMMC_BLOCKSIZE; if (progress_callback != NULL) { (*progress_callback)(initialLength - length, initialLength); } } // write remaining sectors if (sectorCount > 0) { if (disk_write_prod(buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorCount) != RES_OK) goto out; length -= sectorCount * NX_EMMC_BLOCKSIZE; sector += sectorCount; sectorOffset += sectorCount; if (progress_callback != NULL) { (*progress_callback)(initialLength - length, initialLength); } } // if there is data remaining that is smaller than a sector, read that sector, write remaining data to it and write back whole sector if (length == 0) goto done; if (length > NX_EMMC_BLOCKSIZE) { gfx_printf("%kERROR, ERRO! Length is %d!\n", COLOR_RED, length); goto out; } if (disk_read_prod(tmp_sec, sector, 1) != RES_OK) goto out; memcpy(tmp_sec, buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), length); if (disk_write_prod(tmp_sec, sector, 1) != RES_OK) goto out; done: result = true; if (progress_callback != NULL) { (*progress_callback)(initialLength, initialLength); } out: free(tmp_sec); free(tmp); return result; } bool writeHash(u32 hashOffset, u32 offset, u32 sz) { bool result = false; u8 *buffer = (u8 *)malloc(sz); if (!readData(buffer, offset, sz, NULL)) { goto out; } u8 hash[0x20]; se_calc_sha256(hash, buffer, sz); if (!writeData(hash, hashOffset, 0x20, NULL)) { goto out; } result = true; out: free(buffer); return result; } void test() { // u32 size = 262144; // gfx_printf("%kTest reading %d bytes\n", COLOR_ORANGE, size); // u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE); // u8* bigBuffer = (u8 *)malloc(size); // u32 offset = 0; // readData(bigBuffer, 0, size, ENCRYPTED); // while(size > NX_EMMC_BLOCKSIZE){ // readData(buffer, offset, NX_EMMC_BLOCKSIZE, ENCRYPTED); // if(memcmp(buffer, bigBuffer + offset, NX_EMMC_BLOCKSIZE) != 0){ // gfx_printf("arry mismatch on offset %d", offset); // } // size -= NX_EMMC_BLOCKSIZE; // offset += NX_EMMC_BLOCKSIZE; // } // free(buffer); // free(bigBuffer); // gfx_printf("%Reading Done!\n", COLOR_ORANGE, size); } bool verifyHash(u32 hashOffset, u32 offset, u32 sz) { bool result = false; u8 *buffer = (u8 *)malloc(sz); if(!readData(buffer, offset, sz, NULL)) goto out; u8 hash1[0x20]; se_calc_sha256(hash1, buffer, sz); u8 hash2[0x20]; if(!readData(hash2, hashOffset, 0x20, NULL)) goto out; if (memcmp(hash1, hash2, 0x20)) { EPRINTF("error: hash verification failed\n"); gfx_hexdump(0, hash1, 0x20); gfx_hexdump(0, hash2, 0x20); goto out; } result = true; out: free(buffer); return result; } u32 certSize() { u32 buffer; readData((u8 *)&buffer, 0x0AD0, sizeof(buffer), NULL); return buffer; } u32 calibrationDataSize() { u32 buffer; readData((u8 *)&buffer, 0x08, sizeof(buffer), NULL); return buffer; } bool writeCal0Hash() { return writeHash(0x20, 0x40, calibrationDataSize()); } bool writeClientCertHash() { return writeHash(0x12E0, 0xAE0, certSize()); } bool verifyCal0Hash() { return verifyHash(0x20, 0x40, calibrationDataSize()); } bool verifyClientCertHash() { return verifyHash(0x12E0, 0xAE0, certSize()); } bool verifyProdinfo() { gfx_printf("%kVerifying client cert hash and CAL0 hash...\n", COLOR_YELLOW); if (verifyClientCertHash() && verifyCal0Hash()) { char serial[15]; readData((u8 *)serial, 0x250, 15, NULL); gfx_printf("%kVerification successful!\n%kNew Serial:%s\n", COLOR_GREEN, COLOR_BLUE, serial); return true; } gfx_printf("%kVerification not successful!\nPlease restore backup!\n", COLOR_RED); return false; } void print_progress(u32 count, u32 max) { u32 cur_x = gfx_con.x; u32 cur_y = gfx_con.y; const u8 width = 20; count = (int)((count * 100 / (float)max) / (100 / width)); max = width; const char prefix[] = "Progress: ["; const char suffix[] = "]"; const size_t prefix_length = sizeof(prefix) - 1; const size_t suffix_length = sizeof(suffix) - 1; char *buffer = calloc(max + prefix_length + suffix_length + 1, 1); // +1 for \0 size_t i = 0; strcpy(buffer, prefix); for (; i < max; ++i) { buffer[prefix_length + i] = i < count ? '#' : ' '; } strcpy(&buffer[prefix_length + i], suffix); gfx_printf("%k%s %d%%\n", COLOR_BLUE, buffer, (100 / max) * count); free(buffer); gfx_con.x = cur_x; gfx_con.y = cur_y; } bool getLastBackup() { DIR dir; //char* path = "sd:/incognito"; char path[255]; strcpy(path, "sd:/incognito"); FILINFO fno; FRESULT res; res = f_opendir(&dir, path); /* Open the directory */ if (res == FR_OK) { for (;;) { res = f_readdir(&dir, &fno); /* Read a directory item */ if (res != FR_OK || fno.fname[0] == 0) break; /* Break on error or end of dir */ if ((fno.fattrib & AM_DIR) == 0) { /* It is not a directory */ gfx_printf("%s/%s\n", path, fno.fname); } } f_closedir(&dir); } return res; } bool checkBackupExists() { char *name; if (!emu_cfg.enabled || h_cfg.emummc_force_disable) { name = BACKUP_NAME_SYSNAND; } else { name = BACKUP_NAME_EMUNAND; } return f_stat(name, NULL) == FR_OK; } bool backupProdinfo() { bool result = false; char *name; if (!emu_cfg.enabled || h_cfg.emummc_force_disable) { name = BACKUP_NAME_SYSNAND; } else { name = BACKUP_NAME_EMUNAND; } gfx_printf("%kBacking up %s...\n", COLOR_YELLOW, name); if (checkBackupExists()) { gfx_printf("%kBackup already exists!\nWill rename old backup.\n", COLOR_YELLOW); u32 filenameSuffix = 0; char newName[255]; do { sprintf(newName, "%s.%d", name, filenameSuffix); filenameSuffix++; } while (f_stat(newName, NULL) == FR_OK); f_rename(name, newName); gfx_printf("%kOld backup renamed to %s\n", COLOR_YELLOW, newName); } FIL fp; if (f_open(&fp, name, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { gfx_printf("\n%kCannot write to %s!\n", COLOR_RED, name); return false; } u8 *bufferNX = (u8 *)malloc(PRODINFO_SIZE); gfx_printf("%kReading from NAND...\n", COLOR_YELLOW); if (!readData(bufferNX, 0, PRODINFO_SIZE, print_progress)) { gfx_printf("\n%kError reading from NAND!\n", COLOR_RED); goto out; } gfx_printf("%k\nWriting to file...\n", COLOR_YELLOW); u32 bytesWritten; if (f_write(&fp, bufferNX, PRODINFO_SIZE, &bytesWritten) != FR_OK || bytesWritten != PRODINFO_SIZE) { gfx_printf("\n%kError writing to file!\nPlease try again. If this doesn't work, you don't have a working backup!\n", COLOR_RED); goto out; } f_sync(&fp); result = true; gfx_printf("\n%kBackup to %s done!\n\n", COLOR_GREEN, name); out: f_close(&fp); free(bufferNX); return result; } bool restoreProdinfo() { bool result = false; sd_mount(); char *name; if (!emu_cfg.enabled || h_cfg.emummc_force_disable) { name = BACKUP_NAME_SYSNAND; } else { name = BACKUP_NAME_EMUNAND; } gfx_printf("%kRestoring from %s...\n", COLOR_YELLOW, name); FIL fp; if (f_open(&fp, name, FA_READ) != FR_OK) { gfx_printf("\n%kCannot open %s!\n", COLOR_RED, name); return false; } u8 *bufferNX = (u8 *)malloc(PRODINFO_SIZE); u32 bytesRead; gfx_printf("%kReading from file...\n", COLOR_YELLOW); if (f_read(&fp, bufferNX, PRODINFO_SIZE, &bytesRead) != FR_OK || bytesRead != PRODINFO_SIZE) { gfx_printf("\n%kError reading from file!\n", COLOR_RED); goto out; } gfx_printf("%kWriting to NAND...\n", COLOR_YELLOW); if (!writeData(bufferNX, 0, PRODINFO_SIZE, print_progress)) { gfx_printf("\n%kError writing to NAND!\nThis is bad. Try again, because your switch probably won't boot.\n" "If you see this error again, you should restore via NAND backup in hekate.\n", COLOR_RED); goto out; } result = true; gfx_printf("\n%kRestore from %s done!\n\n", COLOR_GREEN, name); out: f_close(&fp); free(bufferNX); return result; }