1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-11-26 13:52:29 +00:00
Incognito_RCM/source/keys/keys.c
2019-05-12 14:05:58 -04:00

860 lines
34 KiB
C

/*
* Copyright (c) 2019 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keys.h"
#include "../gfx/di.h"
#include "../gfx/gfx.h"
#include "../hos/pkg1.h"
#include "../hos/pkg2.h"
#include "../hos/sept.h"
#include "../libs/fatfs/ff.h"
#include "../mem/heap.h"
#include "../mem/mc.h"
#include "../mem/sdram.h"
#include "../sec/se.h"
#include "../sec/se_t210.h"
#include "../sec/tsec.h"
#include "../soc/fuse.h"
#include "../soc/smmu.h"
#include "../soc/t210.h"
#include "../storage/nx_emmc.h"
#include "../storage/sdmmc.h"
#include "../utils/btn.h"
#include "../utils/list.h"
#include "../utils/sprintf.h"
#include "../utils/util.h"
#include "key_sources.inl"
#include <string.h>
extern bool sd_mount();
extern void sd_unmount();
extern int sd_save_to_file(void *buf, u32 size, const char *filename);
u32 _key_count = 0;
sdmmc_storage_t storage;
emmc_part_t *system_part;
#define TPRINTF(text) \
end_time = get_tmr_ms(); \
gfx_printf(text" done @ %d.%03ds\n", (end_time - start_time) / 1000, (end_time - start_time) % 1000)
#define TPRINTFARGS(text, args...) \
end_time = get_tmr_ms(); \
gfx_printf(text" done @ %d.%03ds\n", args, (end_time - start_time) / 1000, (end_time - start_time) % 1000)
#define SAVE_KEY(name, src, len) _save_key(name, src, len, text_buffer)
#define SAVE_KEY_FAMILY(name, src, count, len) _save_key_family(name, src, count, len, text_buffer)
static u8 temp_key[0x10],
bis_key[4][0x20] = {0},
device_key[0x10] = {0},
sd_seed[0x10] = {0},
// FS-related keys
fs_keys[10][0x20] = {0},
header_key[0x20] = {0},
save_mac_key[0x10] = {0},
// other sysmodule sources
es_keys[3][0x10] = {0},
eticket_rsa_kek[0x10] = {0},
ssl_keys[2][0x10] = {0},
ssl_rsa_kek[0x10] = {0},
// keyblob-derived families
keyblob[KB_FIRMWARE_VERSION_600+1][0x90] = {0},
keyblob_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
keyblob_mac_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
package1_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
// master key-derived families
key_area_key[3][KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
master_kek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
master_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
package2_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
titlekek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0};
static const u32 colors[6] = {COLOR_RED, COLOR_ORANGE, COLOR_YELLOW, COLOR_GREEN, COLOR_BLUE, COLOR_VIOLET};
// key functions
static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); };
static void _save_key(const char *name, const void *data, const u32 len, char *outbuf);
static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf);
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed);
// nca functions
static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len);
static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr);
static void _update_ctr(u8 *ctr, u32 ofs);
void dump_keys() {
display_backlight_brightness(100, 1000);
gfx_clear_grey(0x1B);
gfx_con_setpos(0, 0);
gfx_printf("[%kLo%kck%kpi%kck%k-R%kCM%k v%d.%d.%d%k]\n\n",
colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC);
u32 start_time = get_tmr_ms(),
end_time,
retries = 0;
tsec_ctxt_t tsec_ctxt;
sdmmc_t sdmmc;
sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4);
// Read package1.
u8 *pkg1 = (u8 *)malloc(0x40000);
sdmmc_storage_set_mmc_partition(&storage, 1);
sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1);
const pkg1_id_t *pkg1_id = pkg1_identify(pkg1);
if (!pkg1_id) {
EPRINTF("Unknown pkg1 version.");
goto out_wait;
}
bool found_tsec_fw = false;
for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32)) {
if (*pos == 0xCF42004D) {
tsec_ctxt.fw = (u8 *)pos;
found_tsec_fw = true;
break;
}
}
if (!found_tsec_fw) {
EPRINTF("Failed to locate TSEC firmware.");
goto out_wait;
}
u32 MAX_KEY = 6;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620)
MAX_KEY = pkg1_id->kb + 1;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) {
if (!f_stat("sd:/sept/payload.bak", NULL)) {
f_unlink("sd:/sept/payload.bin");
f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin");
}
if (!(EMC(EMC_SCRATCH0) & EMC_SEPT_RUN)) {
// bundle lp0 fw for sept instead of loading it from SD as hekate does
sdram_lp0_save_params(sdram_get_params_patched());
FIL fp;
if (f_stat("sd:/sept/sept-primary.bin", NULL) || f_stat("sd:/sept/sept-secondary.enc", NULL)) {
EPRINTF("On firmware 7.x or higher but no sept payload present\nSkipping new key derivation...");
goto get_tsec;
}
// backup post-reboot payload
if (!f_stat("sd:/sept/payload.bin", NULL))
f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak");
// write self to payload.bin to run again when sept finishes
f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE);
u32 payload_size = *(u32 *)(IPL_LOAD_ADDR + 0x84) - IPL_LOAD_ADDR;
f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL);
f_close(&fp);
gfx_printf("%kFirmware 7.x or higher detected.\n%kRenamed /sept/payload.bin", colors[0], colors[1]);
gfx_printf("\n%k to /sept/payload.bak\n%kCopied self to /sept/payload.bin",colors[2], colors[3]);
sdmmc_storage_end(&storage);
if (!reboot_to_sept((u8 *)tsec_ctxt.fw))
goto out_wait;
} else {
se_aes_key_read(12, master_key[pkg1_id->kb], 0x10);
}
}
get_tsec: ;
u8 tsec_keys[0x10 * 2] = {0};
tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR);
tsec_ctxt.pkg1 = pkg1;
tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) {
// Exit after TSEC key generation.
*((vu16 *)((u32)tsec_ctxt.fw + 0x2DB5)) = 0x02F8;
}
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) {
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size);
tsec_ctxt.fw = tsec_paged;
}
int res = 0;
mc_disable_ahb_redirect();
while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) {
memset(tsec_keys, 0x00, 0x20);
retries++;
if (retries > 15) {
res = -1;
break;
}
}
free(pkg1);
mc_enable_ahb_redirect();
if (res < 0) {
EPRINTFARGS("ERROR %x dumping TSEC.\n", res);
goto out_wait;
}
TPRINTFARGS("%kTSEC key(s)... ", colors[0]);
// Master key derivation
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) {
se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot)
se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]);
se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks)
se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source);
}
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620 && _key_exists(master_key[pkg1_id->kb])) {
// derive all lower master keys in the event keyblobs are bad
for (u32 i = pkg1_id->kb; i > 0; i--) {
se_aes_key_set(8, master_key[i], 0x10);
se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]);
}
}
u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
u8 keyblob_mac[0x10] = {0};
u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1),
FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)};
se_aes_key_set(8, tsec_keys, 0x10);
se_aes_key_set(9, sbk, 0x10);
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++) {
se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec)
se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk)
se_aes_key_set(7, keyblob_key[i], 0x10);
se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
if (i == 0)
se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
// verify keyblob is not corrupt
sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block);
se_aes_key_set(3, keyblob_mac_key[i], 0x10);
se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0);
if (memcmp(keyblob_block, keyblob_mac, 0x10)) {
EPRINTFARGS("Keyblob %x corrupt.", i);
gfx_hexdump(i, keyblob_block, 0x10);
gfx_hexdump(i, keyblob_mac, 0x10);
continue;
}
// decrypt keyblobs
se_aes_key_set(2, keyblob_key[i], 0x10);
se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10);
memcpy(package1_key[i], keyblob[i] + 0x80, 0x10);
memcpy(master_kek[i], keyblob[i], 0x10);
se_aes_key_set(7, master_kek[i], 0x10);
se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source);
}
free(keyblob_block);
TPRINTFARGS("%kMaster keys... ", colors[1]);
/* key = unwrap(source, wrapped_key):
key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key
*/
if (_key_exists(device_key)) {
se_aes_key_set(8, device_key, 0x10);
se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10);
// kek = generate_kek(bkeks, devkey, aeskek, aeskey)
_generate_kek(8, bis_kek_source, device_key, aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10);
memcpy(bis_key[3], bis_key[2], 0x20);
}
// Dump package2.
u8 *pkg2 = NULL;
pkg2_kip1_info_t *ki = NULL;
if (!_key_exists(master_key[pkg1_id->kb])) {
EPRINTF("Current master key not found.\nUnable to decrypt Package2.");
goto pkg2_done;
}
sdmmc_storage_set_mmc_partition(&storage, 0);
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &storage);
// Find package2 partition.
emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part) {
EPRINTF("Failed to locate Package2.");
goto pkg2_done;
}
// Read in package2 header and get package2 real size.
u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, 1, tmp);
u32 *hdr_pkg2_raw = (u32 *)(tmp + 0x100);
u32 pkg2_size = hdr_pkg2_raw[0] ^ hdr_pkg2_raw[2] ^ hdr_pkg2_raw[3];
free(tmp);
if (pkg2_size > 0x7FC000) {
EPRINTF("Invalid Package2 header.");
goto pkg2_done;
}
// Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE);
pkg2 = malloc(pkg2_size_aligned);
nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, pkg2_size_aligned / NX_EMMC_BLOCKSIZE, pkg2);
// Decrypt package2 and parse KIP1 blobs in INI1 section.
se_aes_key_set(8, master_key[pkg1_id->kb], 0x10);
se_aes_unwrap_key(8, 8, package2_key_source);
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(pkg2);
if (!pkg2_hdr) {
EPRINTF("Failed to decrypt Package2.");
goto pkg2_done;
}
TPRINTFARGS("%kDecrypt pkg2... ", colors[2]);
LIST_INIT(kip1_info);
pkg2_parse_kips(&kip1_info, pkg2_hdr);
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki_tmp, &kip1_info, link) {
if(ki_tmp->kip1->tid == 0x0100000000000000ULL) {
ki = malloc(sizeof(pkg2_kip1_info_t));
memcpy(ki, ki_tmp, sizeof(pkg2_kip1_info_t));
break;
}
}
LIST_FOREACH_SAFE(iter, &kip1_info)
free(CONTAINER_OF(iter, pkg2_kip1_info_t, link));
if (!ki) {
EPRINTF("Failed to parse INI1.");
goto pkg2_done;
}
pkg2_decompress_kip(ki, 2 | 4); // we only need .rodata and .data
TPRINTFARGS("%kDecompress FS...", colors[3]);
u8 hash_index = 0, hash_max = 9, hash_order[10],
key_lengths[10] = {0x10, 0x20, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x20, 0x20};
u32 start_offset = 0, hks_offset_from_end = ki->kip1->sections[2].size_decomp, alignment = 1;
// the FS keys appear in different orders
if (!memcmp(pkg1_id->id, "2016", 4)) {
// 1.0.0 doesn't have SD keys at all
hash_max = 6;
// the first key isn't aligned with the rest
memcpy(fs_keys[2], ki->kip1->data + ki->kip1->sections[0].size_comp + 0x1ae0e, 0x10);
hash_index = 1;
start_offset = 0x1b517;
hks_offset_from_end = 0x125bc2;
alignment = 0x10;
u8 temp[7] = {2, 3, 4, 0, 5, 6, 1};
memcpy(hash_order, temp, 7);
} else {
// 2.0.0 - 8.0.0
alignment = 0x40;
switch (pkg1_id->kb) {
case KB_FIRMWARE_VERSION_100_200:
start_offset = 0x1d226;
alignment = 0x10;
hks_offset_from_end -= 0x26fe;
break;
case KB_FIRMWARE_VERSION_300:
start_offset = 0x1ffa6;
hks_offset_from_end -= 0x298b;
break;
case KB_FIRMWARE_VERSION_301:
start_offset = 0x20026;
hks_offset_from_end -= 0x29ab;
break;
case KB_FIRMWARE_VERSION_400:
start_offset = 0x1c64c;
hks_offset_from_end -= 0x37eb;
break;
case KB_FIRMWARE_VERSION_500:
start_offset = 0x1f3b4;
hks_offset_from_end -= 0x465b;
alignment = 0x20;
break;
case KB_FIRMWARE_VERSION_600:
case KB_FIRMWARE_VERSION_620:
start_offset = 0x27350;
hks_offset_from_end = 0x17ff5;
alignment = 8;
break;
case KB_FIRMWARE_VERSION_700:
start_offset = 0x29c50;
hks_offset_from_end -= 0x6a73;
alignment = 8;
break;
}
if (pkg1_id->kb <= KB_FIRMWARE_VERSION_500) {
u8 temp[10] = {2, 3, 4, 0, 5, 7, 9, 8, 6, 1};
memcpy(hash_order, temp, 10);
} else {
u8 temp[10] = {6, 5, 7, 2, 3, 4, 0, 9, 8, 1};
memcpy(hash_order, temp, 10);
}
}
u8 temp_hash[0x20];
for (u32 i = ki->kip1->sections[0].size_comp + start_offset; i < ki->size - 0x20; ) {
se_calc_sha256(temp_hash, ki->kip1->data + i, key_lengths[hash_order[hash_index]]);
if (!memcmp(temp_hash, fs_hashes_sha256[hash_order[hash_index]], 0x20)) {
memcpy(fs_keys[hash_order[hash_index]], ki->kip1->data + i, key_lengths[hash_order[hash_index]]);
/*if (hash_index == hash_max) {
TPRINTFARGS("%d: %x end -%x", hash_index, (*(ki->kip1->data + i)), ki->size - i);
} else {
TPRINTFARGS("%d: %x rodata +%x", hash_index, (*(ki->kip1->data + i)), i - ki->kip1->sections[0].size_comp);
}*/
i += key_lengths[hash_order[hash_index]];
if (hash_index == hash_max - 1) {
i = ki->size - hks_offset_from_end;
} else if (hash_index == hash_max) {
break;
}
hash_index++;
} else {
i += alignment;
}
}
pkg2_done:
free(pkg2);
free(ki);
TPRINTFARGS("%kFS keys... ", colors[4]);
if (_key_exists(fs_keys[0]) && _key_exists(fs_keys[1]) && _key_exists(master_key[0])) {
_generate_kek(8, fs_keys[0], master_key[0], aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_block_ecb(8, 0, header_key + 0x00, fs_keys[1] + 0x00);
se_aes_crypt_block_ecb(8, 0, header_key + 0x10, fs_keys[1] + 0x10);
}
if (_key_exists(fs_keys[5]) && _key_exists(fs_keys[6]) && _key_exists(device_key)) {
_generate_kek(8, fs_keys[5], device_key, aes_kek_generation_source, NULL);
se_aes_crypt_block_ecb(8, 0, save_mac_key, fs_keys[6]);
}
for (u32 i = 0; i < MAX_KEY; i++) {
if (!_key_exists(master_key[i]))
continue;
if (_key_exists(fs_keys[2]) && _key_exists(fs_keys[3]) && _key_exists(fs_keys[4])) {
for (u32 j = 0; j < 3; j++) {
_generate_kek(8, fs_keys[2 + j], master_key[i], aes_kek_generation_source, NULL);
se_aes_crypt_block_ecb(8, 0, key_area_key[j][i], aes_key_generation_source);
}
}
se_aes_key_set(8, master_key[i], 0x10);
se_aes_crypt_block_ecb(8, 0, package2_key[i], package2_key_source);
se_aes_crypt_block_ecb(8, 0, titlekek[i], titlekek_source);
}
if (!_key_exists(header_key) || !_key_exists(bis_key[2]))
goto key_output;
se_aes_key_set(4, header_key + 0x00, 0x10);
se_aes_key_set(5, header_key + 0x10, 0x10);
se_aes_key_set(8, bis_key[2] + 0x00, 0x10);
se_aes_key_set(9, bis_key[2] + 0x10, 0x10);
system_part = nx_emmc_part_find(&gpt, "SYSTEM");
if (!system_part) {
EPRINTF("Failed to locate System partition.");
goto key_output;
}
__attribute__ ((aligned (16))) FATFS emmc_fs;
if (f_mount(&emmc_fs, "emmc:", 1)) {
EPRINTF("Mount failed.");
goto key_output;
}
DIR dir;
FILINFO fno;
FIL fp;
// sysmodule NCAs only ever have one section (exefs) so 0x600 is sufficient
u8 *dec_header = (u8*)malloc(0x600);
char path[100] = "emmc:/Contents/registered";
u32 titles_found = 0, title_limit = 2, read_bytes = 0;
if (!memcmp(pkg1_id->id, "2016", 4))
title_limit = 1;
u8 *temp_file = NULL;
if (f_opendir(&dir, path)) {
EPRINTF("Failed to open System:/Contents/registered.");
goto dismount;
}
// prepopulate /Contents/registered in decrypted sector cache
while (!f_readdir(&dir, &fno) && fno.fname[0]) {}
f_closedir(&dir);
if (f_opendir(&dir, path)) {
EPRINTF("Failed to open System:/Contents/registered.");
goto dismount;
}
path[25] = '/';
start_offset = 0;
while (!f_readdir(&dir, &fno) && fno.fname[0] && titles_found < title_limit) {
memcpy(path + 26, fno.fname, 36);
path[62] = 0;
if (fno.fattrib & AM_DIR)
memcpy(path + 62, "/00", 4);
if (f_open(&fp, path, FA_READ | FA_OPEN_EXISTING)) continue;
if (f_lseek(&fp, 0x200) || f_read(&fp, dec_header, 32, &read_bytes) || read_bytes != 32) {
f_close(&fp);
continue;
}
se_aes_xts_crypt(5, 4, 0, 1, dec_header + 0x200, dec_header, 32, 1);
// es doesn't contain es key sources on 1.0.0
if (memcmp(pkg1_id->id, "2016", 4) && *(u32*)(dec_header + 0x210) == 0x33 && dec_header[0x205] == 0) {
// es (offset 0x210 is lower half of titleid, 0x205 == 0 means it's program nca, not meta)
switch (pkg1_id->kb) {
case KB_FIRMWARE_VERSION_100_200:
start_offset = 0x557b;
break;
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
start_offset = 0x552d;
break;
case KB_FIRMWARE_VERSION_400:
start_offset = 0x5382;
break;
case KB_FIRMWARE_VERSION_500:
start_offset = 0x5a63;
break;
case KB_FIRMWARE_VERSION_600:
case KB_FIRMWARE_VERSION_620:
start_offset = 0x5674;
break;
case KB_FIRMWARE_VERSION_700:
start_offset = 0x5563;
break;
}
hash_order[2] = 2;
if (pkg1_id->kb < KB_FIRMWARE_VERSION_500) {
hash_order[0] = 0;
hash_order[1] = 1;
} else {
hash_order[0] = 1;
hash_order[1] = 0;
}
hash_index = 0;
// decrypt only what is needed to locate needed keys
temp_file = (u8*)_nca_process(5, 4, &fp, start_offset, 0xc0);
for (u32 i = 0; i <= 0xb0; ) {
se_calc_sha256(temp_hash, temp_file + i, 0x10);
if (!memcmp(temp_hash, es_hashes_sha256[hash_order[hash_index]], 0x10)) {
memcpy(es_keys[hash_order[hash_index]], temp_file + i, 0x10);
hash_index++;
if (hash_index == 3)
break;
i += 0x10;
} else {
i++;
}
}
free(temp_file);
temp_file = NULL;
titles_found++;
} else if (*(u32*)(dec_header + 0x210) == 0x24 && dec_header[0x205] == 0) {
// ssl
switch (pkg1_id->kb) {
case KB_FIRMWARE_VERSION_100_200:
start_offset = 0x3d41a;
break;
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
start_offset = 0x3cb81;
break;
case KB_FIRMWARE_VERSION_400:
start_offset = 0x3711c;
break;
case KB_FIRMWARE_VERSION_500:
start_offset = 0x37901;
break;
case KB_FIRMWARE_VERSION_600:
case KB_FIRMWARE_VERSION_620:
start_offset = 0x1d5be;
break;
case KB_FIRMWARE_VERSION_700:
start_offset = 0x1d437;
break;
}
if (!memcmp(pkg1_id->id, "2016", 4))
start_offset = 0x449dc;
temp_file = (u8*)_nca_process(5, 4, &fp, start_offset, 0x70);
for (u32 i = 0; i <= 0x60; i++) {
se_calc_sha256(temp_hash, temp_file + i, 0x10);
if (!memcmp(temp_hash, ssl_hashes_sha256[1], 0x10)) {
memcpy(ssl_keys[1], temp_file + i, 0x10);
// only get ssl_rsa_kek_source_x from SSL on 1.0.0
// we get it from ES on every other firmware
// and it's located oddly distant from ssl_rsa_kek_source_y on >= 6.0.0
if (!memcmp(pkg1_id->id, "2016", 4)) {
se_calc_sha256(temp_hash, temp_file + i + 0x10, 0x10);
if (!memcmp(temp_hash, ssl_hashes_sha256[0], 0x10))
memcpy(es_keys[2], temp_file + i + 0x10, 0x10);
}
break;
}
}
free(temp_file);
temp_file = NULL;
titles_found++;
}
f_close(&fp);
}
f_closedir(&dir);
free(dec_header);
if (f_open(&fp, "sd:/Nintendo/Contents/private", FA_READ | FA_OPEN_EXISTING)) {
EPRINTF("Failed to open SD seed verification file from SD.");
goto dismount;
}
// get sd seed verification vector
if (f_read(&fp, temp_key, 0x10, &read_bytes) || read_bytes != 0x10) {
EPRINTF("Failed to read SD seed verification vector from SD.");
f_close(&fp);
goto dismount;
}
f_close(&fp);
if (f_open(&fp, "emmc:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) {
EPRINTF("Failed to open ns_appman save.");
goto dismount;
}
// locate sd seed
u8 read_buf[0x20] = {0};
for (u32 i = 0; i < f_size(&fp); i += 0x4000) {
if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20)
break;
if (!memcmp(temp_key, read_buf, 0x10)) {
memcpy(sd_seed, read_buf + 0x10, 0x10);
break;
}
}
f_close(&fp);
dismount:
f_mount(NULL, "emmc:", 1);
nx_emmc_gpt_free(&gpt);
sdmmc_storage_end(&storage);
if (memcmp(pkg1_id->id, "2016", 4)) {
TPRINTFARGS("%kES & SSL keys...", colors[5]);
} else {
TPRINTFARGS("%kSSL keys... ", colors[5]);
}
// derive eticket_rsa_kek and ssl_rsa_kek
if (_key_exists(es_keys[0]) && _key_exists(es_keys[1]) && _key_exists(master_key[0])) {
for (u32 i = 0; i < 0x10; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
_generate_kek(8, es_keys[1], master_key[0], temp_key, NULL);
se_aes_crypt_block_ecb(8, 0, eticket_rsa_kek, es_keys[0]);
}
if (_key_exists(ssl_keys[1]) && _key_exists(es_keys[2]) && _key_exists(master_key[0])) {
for (u32 i = 0; i < 0x10; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i];
_generate_kek(8, es_keys[2], master_key[0], temp_key, NULL);
se_aes_crypt_block_ecb(8, 0, ssl_rsa_kek, ssl_keys[1]);
}
key_output: ;
__attribute__ ((aligned (16))) char text_buffer[0x3000] = {0};
SAVE_KEY("aes_kek_generation_source", aes_kek_generation_source, 0x10);
SAVE_KEY("aes_key_generation_source", aes_key_generation_source, 0x10);
SAVE_KEY("bis_kek_source", bis_kek_source, 0x10);
SAVE_KEY_FAMILY("bis_key", bis_key, 4, 0x20);
SAVE_KEY_FAMILY("bis_key_source", bis_key_source, 3, 0x20);
SAVE_KEY("device_key", device_key, 0x10);
SAVE_KEY("eticket_rsa_kek", eticket_rsa_kek, 0x10);
SAVE_KEY("eticket_rsa_kek_source", es_keys[0], 0x10);
SAVE_KEY("eticket_rsa_kekek_source", es_keys[1], 0x10);
SAVE_KEY("header_kek_source", fs_keys[0], 0x10);
SAVE_KEY("header_key", header_key, 0x20);
SAVE_KEY("header_key_source", fs_keys[1], 0x20);
SAVE_KEY_FAMILY("key_area_key_application", key_area_key[0], MAX_KEY, 0x10);
SAVE_KEY("key_area_key_application_source", fs_keys[2], 0x10);
SAVE_KEY_FAMILY("key_area_key_ocean", key_area_key[1], MAX_KEY, 0x10);
SAVE_KEY("key_area_key_ocean_source", fs_keys[3], 0x10);
SAVE_KEY_FAMILY("key_area_key_system", key_area_key[2], MAX_KEY, 0x10);
SAVE_KEY("key_area_key_system_source", fs_keys[4], 0x10);
SAVE_KEY_FAMILY("keyblob", keyblob, 6, 0x90);
SAVE_KEY_FAMILY("keyblob_key", keyblob_key, 6, 0x10);
SAVE_KEY_FAMILY("keyblob_key_source", keyblob_key_source, 6, 0x10);
SAVE_KEY_FAMILY("keyblob_mac_key", keyblob_mac_key, 6, 0x10);
SAVE_KEY("keyblob_mac_key_source", keyblob_mac_key_source, 0x10);
SAVE_KEY_FAMILY("master_kek", master_kek, MAX_KEY, 0x10);
SAVE_KEY("master_kek_source_06", master_kek_sources[0], 0x10);
SAVE_KEY("master_kek_source_07", master_kek_sources[1], 0x10);
SAVE_KEY_FAMILY("master_key", master_key, MAX_KEY, 0x10);
SAVE_KEY("master_key_source", master_key_source, 0x10);
SAVE_KEY_FAMILY("package1_key", package1_key, 6, 0x10);
SAVE_KEY_FAMILY("package2_key", package2_key, MAX_KEY, 0x10);
SAVE_KEY("package2_key_source", package2_key_source, 0x10);
SAVE_KEY("per_console_key_source", per_console_key_source, 0x10);
SAVE_KEY("retail_specific_aes_key_source", retail_specific_aes_key_source, 0x10);
for (u32 i = 0; i < 0x10; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
SAVE_KEY("rsa_oaep_kek_generation_source", temp_key, 0x10);
for (u32 i = 0; i < 0x10; i++)
temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i];
SAVE_KEY("rsa_private_kek_generation_source", temp_key, 0x10);
SAVE_KEY("save_mac_kek_source", fs_keys[5], 0x10);
SAVE_KEY("save_mac_key", save_mac_key, 0x10);
SAVE_KEY("save_mac_key_source", fs_keys[6], 0x10);
SAVE_KEY("sd_card_kek_source", fs_keys[7], 0x10);
SAVE_KEY("sd_card_nca_key_source", fs_keys[8], 0x20);
SAVE_KEY("sd_card_save_key_source", fs_keys[9], 0x20);
SAVE_KEY("sd_seed", sd_seed, 0x10);
SAVE_KEY("secure_boot_key", sbk, 0x10);
SAVE_KEY("ssl_rsa_kek", ssl_rsa_kek, 0x10);
SAVE_KEY("ssl_rsa_kek_source_x", es_keys[2], 0x10);
SAVE_KEY("ssl_rsa_kek_source_y", ssl_keys[1], 0x10);
SAVE_KEY_FAMILY("titlekek", titlekek, MAX_KEY, 0x10);
SAVE_KEY("titlekek_source", titlekek_source, 0x10);
SAVE_KEY("tsec_key", tsec_keys, 0x10);
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620)
SAVE_KEY("tsec_root_key", tsec_keys + 0x10, 0x10);
//gfx_con.fntsz = 8; gfx_puts(text_buffer); gfx_con.fntsz = 16;
TPRINTFARGS("\n%kFound %d keys.\n%kLockpick totally", colors[0], _key_count, colors[1]);
f_mkdir("switch");
if (!sd_save_to_file(text_buffer, strlen(text_buffer), "sd:/switch/prod.keys") && !f_stat("sd:/switch/prod.keys", &fno)) {
gfx_printf("%kWrote %d bytes to /switch/prod.keys\n", colors[2], (u32)fno.fsize);
} else
EPRINTF("Failed to save keys to SD.");
sd_unmount();
out_wait:
gfx_printf("\n%kVOL + -> Reboot to RCM\n%kVOL - -> Reboot normally\n%kPower -> Power off", colors[3], colors[4], colors[5]);
u32 btn = btn_wait();
if (btn & BTN_VOL_UP)
reboot_rcm();
else if (btn & BTN_VOL_DOWN)
reboot_normal();
else
power_off();
}
static void _save_key(const char *name, const void *data, const u32 len, char *outbuf) {
if (!_key_exists(data))
return;
u32 pos = strlen(outbuf);
pos += sprintf(&outbuf[pos], "%s = ", name);
for (u32 i = 0; i < len; i++)
pos += sprintf(&outbuf[pos], "%02x", *(u8*)(data + i));
sprintf(&outbuf[pos], "\n");
_key_count++;
}
static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf) {
char temp_name[0x40] = {0};
for (u32 i = 0; i < num_keys; i++) {
sprintf(temp_name, "%s_%02x", name, i);
_save_key(temp_name, data + i * len, len, outbuf);
}
}
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) {
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
return;
se_aes_key_set(ks, master_key, 0x10);
se_aes_unwrap_key(ks, ks, kek_seed);
se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed))
se_aes_unwrap_key(ks, ks, key_seed);
}
static inline u32 _read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len) {
u32 read_bytes = 0, crypt_offset, read_size, num_files, string_table_size, rodata_offset;
u8 *temp_file = (u8*)malloc(0x400),
ctr[0x10] = {0};
if (f_lseek(fp, 0x200) || f_read(fp, temp_file, 0x400, &read_bytes) || read_bytes != 0x400)
return NULL;
se_aes_xts_crypt(hk_ks1, hk_ks2, 0, 1, temp_file, temp_file, 0x200, 2);
// both 1.x and 2.x use master_key_00
temp_file[0x20] -= temp_file[0x20] ? 1 : 0;
// decrypt key area and load decrypted key area key
se_aes_key_set(7, key_area_key[temp_file[7]][temp_file[0x20]], 0x10);
se_aes_crypt_block_ecb(7, 0, temp_file + 0x120, temp_file + 0x120);
se_aes_key_set(2, temp_file + 0x120, 0x10);
for (u32 i = 0; i < 8; i++)
ctr[i] = temp_file[0x347 - i];
crypt_offset = _read_le_u32(temp_file, 0x40) * 0x200 + _read_le_u32(temp_file, 0x240);
read_size = 0x10;
_nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr);
num_files = _read_le_u32(temp_file, 4);
string_table_size = _read_le_u32(temp_file, 8);
if (!memcmp(temp_file + 0x10 + num_files * 0x18, "main.npdm", 9))
crypt_offset += _read_le_u32(temp_file, 0x18);
crypt_offset += 0x10 + num_files * 0x18 + string_table_size;
read_size = 0x40;
_nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr);
rodata_offset = _read_le_u32(temp_file, 0x20);
void *buf = malloc(len);
_nca_fread_ctr(2, fp, buf, crypt_offset + rodata_offset + key_offset, len, ctr);
free(temp_file);
return buf;
}
static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr) {
u32 br;
if (f_lseek(fp, offset) || f_read(fp, buffer, len, &br) || br != len)
return 0;
_update_ctr(ctr, offset);
if (offset % 0x10) {
u8 *temp = (u8*)malloc(ALIGN(br + offset % 0x10, 0x10));
memcpy(temp + offset % 0x10, buffer, br);
se_aes_crypt_ctr(ks, temp, ALIGN(br + offset % 0x10, 0x10), temp, ALIGN(br + offset % 0x10, 0x10), ctr);
memcpy(buffer, temp + offset % 0x10, br);
free(temp);
return br;
}
se_aes_crypt_ctr(ks, buffer, br, buffer, br, ctr);
return br;
}
static void _update_ctr(u8 *ctr, u32 ofs) {
ofs >>= 4;
for (u32 i = 0; i < 4; i++, ofs >>= 8)
ctr[0x10-i-1] = (u8)(ofs & 0xff);
}