1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-11-26 13:52:29 +00:00
Incognito_RCM/source/keys/keys.c
2019-10-04 23:43:10 +02:00

866 lines
24 KiB
C

/*
* Copyright (c) 2019 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keys.h"
#include "../config/config.h"
#include "../gfx/di.h"
#include "../gfx/gfx.h"
#include "../gfx/tui.h"
#include "../hos/pkg1.h"
#include "../hos/pkg2.h"
#include "../hos/sept.h"
#include "../libs/fatfs/ff.h"
#include "../mem/heap.h"
#include "../mem/mc.h"
#include "../mem/sdram.h"
#include "../sec/se.h"
#include "../sec/se_t210.h"
#include "../sec/tsec.h"
#include "../soc/fuse.h"
#include "../soc/smmu.h"
#include "../soc/t210.h"
#include "../storage/emummc.h"
#include "../storage/nx_emmc.h"
#include "../storage/sdmmc.h"
#include "../utils/list.h"
#include "../utils/sprintf.h"
#include "../utils/util.h"
#include "key_sources.inl"
#include "../libs/fatfs/diskio.h"
#include <string.h>
extern bool sd_mount();
extern void sd_unmount();
extern int sd_save_to_file(void *buf, u32 size, const char *filename);
extern hekate_config h_cfg;
u32 _key_count = 0;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
emmc_part_t *system_part;
emmc_part_t *prodinfo_part;
#define SECTORS_IN_CLUSTER 32
#define PRODINFO_SIZE 0x3FBC00
#define BACKUP_NAME_EMUNAND "sd:/prodinfo_emunand.bin"
#define BACKUP_NAME_SYSNAND "sd:/prodinfo_sysnand.bin"
static u8 temp_key[0x10],
bis_key[4][0x20] = {0},
device_key[0x10] = {0},
new_device_key[0x10] = {0},
keyblob[KB_FIRMWARE_VERSION_600 + 1][0x90] = {0},
keyblob_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0},
keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0},
package1_key[KB_FIRMWARE_VERSION_600 + 1][0x10] = {0},
// master key-derived families
master_kek[KB_FIRMWARE_VERSION_MAX + 1][0x10] = {0},
master_key[KB_FIRMWARE_VERSION_MAX + 1][0x10] = {0};
LIST_INIT(gpt);
// key functions
static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); };
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed);
bool dump_keys()
{
display_backlight_brightness(100, 1000);
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
gfx_print_header();
gfx_printf("%kGetting bis_keys...\n", COLOR_YELLOW);
u32 retries = 0;
tsec_ctxt_t tsec_ctxt;
emummc_storage_init_mmc(&storage, &sdmmc);
// Read package1.
u8 *pkg1 = (u8 *)malloc(0x40000);
emummc_storage_set_mmc_partition(&storage, 1);
emummc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1);
const pkg1_id_t *pkg1_id = pkg1_identify(pkg1);
if (!pkg1_id)
{
EPRINTF("Unknown pkg1 version.");
return false;
}
bool found_tsec_fw = false;
for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32))
{
if (*pos == 0xCF42004D)
{
tsec_ctxt.fw = (u8 *)pos;
found_tsec_fw = true;
break;
}
}
if (!found_tsec_fw)
{
EPRINTF("Failed to locate TSEC firmware.");
return false;
}
tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR);
tsec_ctxt.pkg1 = pkg1;
tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size;
// u32 MAX_KEY = 6;
// if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620)
// {
// MAX_KEY = pkg1_id->kb + 1;
// }
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700)
{
se_aes_key_read(12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10);
}
//get_tsec: ;
u8 tsec_keys[0x10 * 2] = {0};
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620)
{
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size);
tsec_ctxt.fw = tsec_paged;
}
int res = 0;
mc_disable_ahb_redirect();
while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0)
{
memset(tsec_keys, 0x00, 0x20);
retries++;
if (retries > 15)
{
res = -1;
break;
}
}
free(pkg1);
mc_enable_ahb_redirect();
if (res < 0)
{
EPRINTFARGS("ERROR %x dumping TSEC.\n", res);
return false;
}
// Master key derivation
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10))
{
se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot)
se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]);
se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks)
se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source);
}
u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
u8 keyblob_mac[0x10] = {0};
u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1),
FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)};
se_aes_key_set(8, tsec_keys, 0x10);
se_aes_key_set(9, sbk, 0x10);
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++)
{
se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec)
se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk)
se_aes_key_set(7, keyblob_key[i], 0x10);
se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
if (i == 0)
{
se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
se_aes_crypt_block_ecb(7, 0, new_device_key, per_console_key_source_4x);
}
// verify keyblob is not corrupt
emummc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block);
se_aes_key_set(3, keyblob_mac_key[i], 0x10);
se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0);
if (memcmp(keyblob_block, keyblob_mac, 0x10))
{
EPRINTFARGS("Keyblob %x corrupt.", i);
gfx_hexdump(i, keyblob_block, 0x10);
gfx_hexdump(i, keyblob_mac, 0x10);
continue;
}
// decrypt keyblobs
se_aes_key_set(2, keyblob_key[i], 0x10);
se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10);
memcpy(package1_key[i], keyblob[i] + 0x80, 0x10);
memcpy(master_kek[i], keyblob[i], 0x10);
se_aes_key_set(7, master_kek[i], 0x10);
se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source);
}
free(keyblob_block);
u32 key_generation = 0;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_500)
{
if ((fuse_read_odm(4) & 0x800) && fuse_read_odm(0) == 0x8E61ECAE && fuse_read_odm(1) == 0xF2BA3BB2)
{
key_generation = fuse_read_odm(2) & 0x1F;
}
}
if (_key_exists(device_key))
{
if (key_generation)
{
se_aes_key_set(8, new_device_key, 0x10);
se_aes_crypt_block_ecb(8, 0, temp_key, new_device_key_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]);
se_aes_key_set(8, master_key[0], 0x10);
se_aes_unwrap_key(8, 8, new_device_keygen_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]);
se_aes_crypt_block_ecb(8, 0, temp_key, temp_key);
}
else
memcpy(temp_key, device_key, 0x10);
se_aes_key_set(8, temp_key, 0x10);
se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10);
// kek = generate_kek(bkeks, devkey, aeskek, aeskey)
_generate_kek(8, bis_kek_source, temp_key, aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10);
memcpy(bis_key[3], bis_key[2], 0x20);
}
emummc_storage_set_mmc_partition(&storage, 0);
// Parse eMMC GPT.
nx_emmc_gpt_parse(&gpt, &storage);
// Find PRODINFO partition.
prodinfo_part = nx_emmc_part_find(&gpt, "PRODINFO");
if (!prodinfo_part)
{
EPRINTF("Failed to locate PRODINFO.");
return false;
}
se_aes_key_set(8, bis_key[0] + 0x00, 0x10);
se_aes_key_set(9, bis_key[0] + 0x10, 0x10);
gfx_printf("%kGot keys!\n", COLOR_GREEN);
char serial[15];
readData((u8 *)serial, 0x250, 15, NULL);
gfx_printf("%kCurrent serial:%s\n\n", COLOR_BLUE, serial);
return true;
}
bool erase(u32 offset, u32 length)
{
u8 *tmp = (u8 *)calloc(length, sizeof(u8));
bool result = writeData(tmp, offset, length, NULL);
free(tmp);
return result;
}
bool writeSerial()
{
const char *junkSerial;
if (!emu_cfg.enabled || h_cfg.emummc_force_disable)
{
junkSerial = "XAW00000000000";
}
else
{
junkSerial = "XAW00000000001";
}
return writeData((u8 *)junkSerial, 0x250, 14, NULL);
}
bool incognito()
{
gfx_printf("%kChecking if backup exists...\n", COLOR_YELLOW);
if (!checkBackupExists())
{
gfx_printf("%kI'm sorry Dave, I'm afraid I can't do that...\n%kWill make a backup first...\n", COLOR_RED, COLOR_YELLOW);
if (!backupProdinfo())
return false;
}
gfx_printf("%kWriting junk serial...\n", COLOR_YELLOW);
if (!writeSerial())
return false;
gfx_printf("%kErasing client cert...\n", COLOR_YELLOW);
if (!erase(0x0AE0, 0x800)) // client cert
return false;
gfx_printf("%kErasing private key...\n", COLOR_YELLOW);
if (!erase(0x3AE0, 0x130)) // private key
return false;
gfx_printf("%kErasing deviceId 1/2...\n", COLOR_YELLOW);
if (!erase(0x35E1, 0x006)) // deviceId
return false;
gfx_printf("%kErasing deviceId 2/2...\n", COLOR_YELLOW);
if (!erase(0x36E1, 0x006)) // deviceId
return false;
gfx_printf("%kErasing device cert 1/2...\n", COLOR_YELLOW);
if (!erase(0x02B0, 0x180)) // device cert
return false;
gfx_printf("%kErasing device cert 2/2...\n", COLOR_YELLOW);
if (!erase(0x3D70, 0x240)) // device cert
return false;
gfx_printf("%kErasing device key...\n", COLOR_YELLOW);
if (!erase(0x3FC0, 0x240)) // device key
return false;
gfx_printf("%kWriting client cert hash...\n", COLOR_YELLOW);
if (!writeClientCertHash())
return false;
gfx_printf("%kWriting CAL0 hash...\n", COLOR_YELLOW);
if (!writeCal0Hash())
return false;
gfx_printf("\n%kIncognito done!\n\n", COLOR_GREEN);
return true;
}
u32 divideCeil(u32 x, u32 y)
{
return 1 + ((x - 1) / y);
}
void cleanUp()
{
h_cfg.emummc_force_disable = emummc_load_cfg();
//nx_emmc_gpt_free(&gpt);
//emummc_storage_end(&storage);
}
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed)
{
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
return;
se_aes_key_set(ks, master_key, 0x10);
se_aes_unwrap_key(ks, ks, kek_seed);
se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed))
se_aes_unwrap_key(ks, ks, key_seed);
}
static inline u32 _read_le_u32(const void *buffer, u32 offset)
{
return (*(u8 *)(buffer + offset + 0)) |
(*(u8 *)(buffer + offset + 1) << 0x08) |
(*(u8 *)(buffer + offset + 2) << 0x10) |
(*(u8 *)(buffer + offset + 3) << 0x18);
}
bool readData(u8 *buffer, u32 offset, u32 length, void (*progress_callback)(u32, u32))
{
if (progress_callback != NULL)
{
(*progress_callback)(0, length);
}
bool result = false;
u32 sector = (offset / NX_EMMC_BLOCKSIZE);
u32 newOffset = (offset % NX_EMMC_BLOCKSIZE);
u32 sectorCount = divideCeil(newOffset + length, NX_EMMC_BLOCKSIZE);
u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
u32 clusterOffset = sector % SECTORS_IN_CLUSTER;
u32 sectorOffset = 0;
while (clusterOffset + sectorCount > SECTORS_IN_CLUSTER)
{
u32 sectorsToRead = SECTORS_IN_CLUSTER - clusterOffset;
if (disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorsToRead) != RES_OK)
goto out;
sector += sectorsToRead;
sectorCount -= sectorsToRead;
clusterOffset = 0;
sectorOffset += sectorsToRead;
if (progress_callback != NULL)
{
(*progress_callback)(sectorOffset * NX_EMMC_BLOCKSIZE, length);
}
}
if (sectorCount == 0)
goto done;
if (disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorCount) != RES_OK)
goto out;
memcpy(buffer, tmp + newOffset, length);
done:
result = true;
if (progress_callback != NULL)
{
(*progress_callback)(length, length);
}
out:
free(tmp);
return result;
}
bool writeData(u8 *buffer, u32 offset, u32 length, void (*progress_callback)(u32, u32))
{
if (progress_callback != NULL)
{
(*progress_callback)(0, length);
}
bool result = false;
u32 initialLength = length;
u8 *tmp_sec = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
u8 *tmp = NULL;
u32 sector = (offset / NX_EMMC_BLOCKSIZE);
u32 newOffset = (offset % NX_EMMC_BLOCKSIZE);
// if there is a sector offset, read involved sector, write data to it with offset and write back whole sector to be sector aligned
if (newOffset > 0)
{
u32 bytesToRead = NX_EMMC_BLOCKSIZE - newOffset;
u32 bytesToWrite;
if (length >= bytesToRead)
{
bytesToWrite = bytesToRead;
}
else
{
bytesToWrite = length;
}
if (disk_read_prod(tmp_sec, sector, 1) != RES_OK)
goto out;
memcpy(tmp_sec + newOffset, buffer, bytesToWrite);
if (disk_write_prod(tmp_sec, sector, 1) != RES_OK)
goto out;
sector++;
length -= bytesToWrite;
newOffset = bytesToWrite;
if (progress_callback != NULL)
{
(*progress_callback)(initialLength - length, initialLength);
}
// are we done?
if (length == 0)
goto done;
}
// write whole sectors in chunks while being cluster aligned
u32 sectorCount = length / NX_EMMC_BLOCKSIZE;
tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
u32 clusterOffset = sector % SECTORS_IN_CLUSTER;
u32 sectorOffset = 0;
while (clusterOffset + sectorCount >= SECTORS_IN_CLUSTER)
{
u32 sectorsToRead = SECTORS_IN_CLUSTER - clusterOffset;
if (disk_write_prod(buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorsToRead) != RES_OK)
goto out;
sector += sectorsToRead;
sectorOffset += sectorsToRead;
sectorCount -= sectorsToRead;
clusterOffset = 0;
length -= sectorsToRead * NX_EMMC_BLOCKSIZE;
if (progress_callback != NULL)
{
(*progress_callback)(initialLength - length, initialLength);
}
}
// write remaining sectors
if (sectorCount > 0)
{
if (disk_write_prod(buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorCount) != RES_OK)
goto out;
length -= sectorCount * NX_EMMC_BLOCKSIZE;
sector += sectorCount;
sectorOffset += sectorCount;
if (progress_callback != NULL)
{
(*progress_callback)(initialLength - length, initialLength);
}
}
// if there is data remaining that is smaller than a sector, read that sector, write remaining data to it and write back whole sector
if (length == 0)
goto done;
if (length > NX_EMMC_BLOCKSIZE)
{
gfx_printf("%kERROR, ERRO! Length is %d!\n", COLOR_RED, length);
goto out;
}
if (disk_read_prod(tmp_sec, sector, 1) != RES_OK)
goto out;
memcpy(tmp_sec, buffer + newOffset + (sectorOffset * NX_EMMC_BLOCKSIZE), length);
if (disk_write_prod(tmp_sec, sector, 1) != RES_OK)
goto out;
done:
result = true;
if (progress_callback != NULL)
{
(*progress_callback)(initialLength, initialLength);
}
out:
free(tmp_sec);
free(tmp);
return result;
}
bool writeHash(u32 hashOffset, u32 offset, u32 sz)
{
bool result = false;
u8 *buffer = (u8 *)malloc(sz);
if (!readData(buffer, offset, sz, NULL))
{
goto out;
}
u8 hash[0x20];
se_calc_sha256(hash, buffer, sz);
if (!writeData(hash, hashOffset, 0x20, NULL))
{
goto out;
}
result = true;
out:
free(buffer);
return result;
}
void test()
{
// u32 size = 262144;
// gfx_printf("%kTest reading %d bytes\n", COLOR_ORANGE, size);
// u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
// u8* bigBuffer = (u8 *)malloc(size);
// u32 offset = 0;
// readData(bigBuffer, 0, size, ENCRYPTED);
// while(size > NX_EMMC_BLOCKSIZE){
// readData(buffer, offset, NX_EMMC_BLOCKSIZE, ENCRYPTED);
// if(memcmp(buffer, bigBuffer + offset, NX_EMMC_BLOCKSIZE) != 0){
// gfx_printf("arry mismatch on offset %d", offset);
// }
// size -= NX_EMMC_BLOCKSIZE;
// offset += NX_EMMC_BLOCKSIZE;
// }
// free(buffer);
// free(bigBuffer);
// gfx_printf("%Reading Done!\n", COLOR_ORANGE, size);
}
bool verifyHash(u32 hashOffset, u32 offset, u32 sz)
{
bool result = false;
u8 *buffer = (u8 *)malloc(sz);
if(!readData(buffer, offset, sz, NULL))
goto out;
u8 hash1[0x20];
se_calc_sha256(hash1, buffer, sz);
u8 hash2[0x20];
if(!readData(hash2, hashOffset, 0x20, NULL))
goto out;
if (memcmp(hash1, hash2, 0x20))
{
EPRINTF("error: hash verification failed\n");
gfx_hexdump(0, hash1, 0x20);
gfx_hexdump(0, hash2, 0x20);
goto out;
}
result = true;
out:
free(buffer);
return result;
}
u32 certSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x0AD0, sizeof(buffer), NULL);
return buffer;
}
u32 calibrationDataSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x08, sizeof(buffer), NULL);
return buffer;
}
bool writeCal0Hash()
{
return writeHash(0x20, 0x40, calibrationDataSize());
}
bool writeClientCertHash()
{
return writeHash(0x12E0, 0xAE0, certSize());
}
bool verifyCal0Hash()
{
return verifyHash(0x20, 0x40, calibrationDataSize());
}
bool verifyClientCertHash()
{
return verifyHash(0x12E0, 0xAE0, certSize());
}
bool verifyProdinfo()
{
gfx_printf("%kVerifying client cert hash and CAL0 hash...\n", COLOR_YELLOW);
if (verifyClientCertHash() && verifyCal0Hash())
{
char serial[15];
readData((u8 *)serial, 0x250, 15, NULL);
gfx_printf("%kVerification successful!\n%kNew Serial:%s\n", COLOR_GREEN, COLOR_BLUE, serial);
return true;
}
gfx_printf("%kVerification not successful!\nPlease restore backup!\n", COLOR_RED);
return false;
}
void print_progress(u32 count, u32 max)
{
u32 cur_x = gfx_con.x;
u32 cur_y = gfx_con.y;
const u8 width = 20;
count = (int)((count * 100 / (float)max) / (100 / width));
max = width;
const char prefix[] = "Progress: [";
const char suffix[] = "]";
const size_t prefix_length = sizeof(prefix) - 1;
const size_t suffix_length = sizeof(suffix) - 1;
char *buffer = calloc(max + prefix_length + suffix_length + 1, 1); // +1 for \0
size_t i = 0;
strcpy(buffer, prefix);
for (; i < max; ++i)
{
buffer[prefix_length + i] = i < count ? '#' : ' ';
}
strcpy(&buffer[prefix_length + i], suffix);
gfx_printf("%k%s %d%%\n", COLOR_BLUE, buffer, (100 / max) * count);
free(buffer);
gfx_con.x = cur_x;
gfx_con.y = cur_y;
}
bool getLastBackup()
{
DIR dir;
//char* path = "sd:/incognito";
char path[255];
strcpy(path, "sd:/incognito");
FILINFO fno;
FRESULT res;
res = f_opendir(&dir, path); /* Open the directory */
if (res == FR_OK)
{
for (;;)
{
res = f_readdir(&dir, &fno); /* Read a directory item */
if (res != FR_OK || fno.fname[0] == 0)
break; /* Break on error or end of dir */
if ((fno.fattrib & AM_DIR) == 0)
{ /* It is not a directory */
gfx_printf("%s/%s\n", path, fno.fname);
}
}
f_closedir(&dir);
}
return res;
}
bool checkBackupExists()
{
char *name;
if (!emu_cfg.enabled || h_cfg.emummc_force_disable)
{
name = BACKUP_NAME_SYSNAND;
}
else
{
name = BACKUP_NAME_EMUNAND;
}
return f_stat(name, NULL) == FR_OK;
}
bool backupProdinfo()
{
bool result = false;
char *name;
if (!emu_cfg.enabled || h_cfg.emummc_force_disable)
{
name = BACKUP_NAME_SYSNAND;
}
else
{
name = BACKUP_NAME_EMUNAND;
}
gfx_printf("%kBacking up %s...\n", COLOR_YELLOW, name);
if (checkBackupExists())
{
gfx_printf("%kBackup already exists!\nWill rename old backup.\n", COLOR_YELLOW);
u32 filenameSuffix = 0;
char newName[255];
do
{
sprintf(newName, "%s.%d", name, filenameSuffix);
filenameSuffix++;
} while (f_stat(newName, NULL) == FR_OK);
f_rename(name, newName);
gfx_printf("%kOld backup renamed to %s\n", COLOR_YELLOW, newName);
}
FIL fp;
if (f_open(&fp, name, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK)
{
gfx_printf("\n%kCannot write to %s!\n", COLOR_RED, name);
return false;
}
u8 *bufferNX = (u8 *)malloc(PRODINFO_SIZE);
gfx_printf("%kReading from NAND...\n", COLOR_YELLOW);
if (!readData(bufferNX, 0, PRODINFO_SIZE, print_progress))
{
gfx_printf("\n%kError reading from NAND!\n", COLOR_RED);
goto out;
}
gfx_printf("%k\nWriting to file...\n", COLOR_YELLOW);
u32 bytesWritten;
if (f_write(&fp, bufferNX, PRODINFO_SIZE, &bytesWritten) != FR_OK || bytesWritten != PRODINFO_SIZE)
{
gfx_printf("\n%kError writing to file!\nPlease try again. If this doesn't work, you don't have a working backup!\n", COLOR_RED);
goto out;
}
f_sync(&fp);
result = true;
gfx_printf("\n%kBackup to %s done!\n\n", COLOR_GREEN, name);
out:
f_close(&fp);
free(bufferNX);
return result;
}
bool restoreProdinfo()
{
bool result = false;
sd_mount();
char *name;
if (!emu_cfg.enabled || h_cfg.emummc_force_disable)
{
name = BACKUP_NAME_SYSNAND;
}
else
{
name = BACKUP_NAME_EMUNAND;
}
gfx_printf("%kRestoring from %s...\n", COLOR_YELLOW, name);
FIL fp;
if (f_open(&fp, name, FA_READ) != FR_OK)
{
gfx_printf("\n%kCannot open %s!\n", COLOR_RED, name);
return false;
}
u8 *bufferNX = (u8 *)malloc(PRODINFO_SIZE);
u32 bytesRead;
gfx_printf("%kReading from file...\n", COLOR_YELLOW);
if (f_read(&fp, bufferNX, PRODINFO_SIZE, &bytesRead) != FR_OK || bytesRead != PRODINFO_SIZE)
{
gfx_printf("\n%kError reading from file!\n", COLOR_RED);
goto out;
}
gfx_printf("%kWriting to NAND...\n", COLOR_YELLOW);
if (!writeData(bufferNX, 0, PRODINFO_SIZE, print_progress))
{
gfx_printf("\n%kError writing to NAND!\nThis is bad. Try again, because your switch probably won't boot.\n"
"If you see this error again, you should restore via NAND backup in hekate.\n",
COLOR_RED);
goto out;
}
result = true;
gfx_printf("\n%kRestore from %s done!\n\n", COLOR_GREEN, name);
out:
f_close(&fp);
free(bufferNX);
return result;
}