1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-11-13 23:46:41 +00:00
Incognito_RCM/source/keys/keys.c
James Tophoven ecc1b65d9d add output
2019-09-25 18:05:38 +02:00

969 lines
33 KiB
C

/*
* Copyright (c) 2019 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keys.h"
#include "../config/config.h"
#include "../gfx/di.h"
#include "../gfx/gfx.h"
#include "../gfx/tui.h"
#include "../hos/pkg1.h"
#include "../hos/pkg2.h"
#include "../hos/sept.h"
#include "../libs/fatfs/ff.h"
#include "../mem/heap.h"
#include "../mem/mc.h"
#include "../mem/sdram.h"
#include "../sec/se.h"
#include "../sec/se_t210.h"
#include "../sec/tsec.h"
#include "../soc/fuse.h"
#include "../soc/smmu.h"
#include "../soc/t210.h"
#include "../storage/emummc.h"
#include "../storage/nx_emmc.h"
#include "../storage/sdmmc.h"
#include "../utils/btn.h"
#include "../utils/list.h"
#include "../utils/sprintf.h"
#include "../utils/util.h"
#include "key_sources.inl"
#include "../libs/fatfs/diskio.h"
#include <string.h>
#include "sha256.h"
#include "aes_xts.h"
extern bool sd_mount();
extern void sd_unmount();
extern int sd_save_to_file(void *buf, u32 size, const char *filename);
extern hekate_config h_cfg;
u32 _key_count = 0;
sdmmc_storage_t storage;
emmc_part_t *system_part;
emmc_part_t *prodinfo_part;
u32 start_time, end_time;
#define TPRINTF(text) \
end_time = get_tmr_us(); \
gfx_printf(text" done in %d us\n", end_time - start_time); \
start_time = get_tmr_us()
#define TPRINTFARGS(text, args...) \
end_time = get_tmr_us(); \
gfx_printf(text" done in %d us\n", args, end_time - start_time); \
start_time = get_tmr_us()
#define SAVE_KEY(name, src, len) _save_key(name, src, len, text_buffer)
#define SAVE_KEY_FAMILY(name, src, count, len) _save_key_family(name, src, count, len, text_buffer)
static u8 temp_key[0x10],
bis_key[4][0x20] = {0},
device_key[0x10] = {0},
new_device_key[0x10] = {0},
// sd_seed[0x10] = {0},
// FS-related keys
// fs_keys[10][0x20] = {0},
// header_key[0x20] = {0},
// save_mac_key[0x10] = {0},
// other sysmodule sources
// es_keys[3][0x10] = {0},
// eticket_rsa_kek[0x10] = {0},
// ssl_keys[2][0x10] = {0},
// ssl_rsa_kek[0x10] = {0},
// keyblob-derived families
keyblob[KB_FIRMWARE_VERSION_600+1][0x90] = {0},
keyblob_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
keyblob_mac_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
package1_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0},
// master key-derived families
// key_area_key[3][KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
master_kek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
master_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0};
// package2_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0},
// titlekek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0};
// key functions
static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); };
// static void _save_key(const char *name, const void *data, const u32 len, char *outbuf);
// static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf);
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed);
// nca functions
//static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len);
//static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr);
//static void _update_ctr(u8 *ctr, u32 ofs);
void dump_keys() {
display_backlight_brightness(100, 1000);
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n",
colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC);
start_time = get_tmr_us();
u32 begin_time = get_tmr_us();
u32 retries = 0;
u32 color_idx = 0;
tsec_ctxt_t tsec_ctxt;
sdmmc_t sdmmc;
emummc_storage_init_mmc(&storage, &sdmmc);
TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]);
// Read package1.
u8 *pkg1 = (u8 *)malloc(0x40000);
emummc_storage_set_mmc_partition(&storage, 1);
emummc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1);
const pkg1_id_t *pkg1_id = pkg1_identify(pkg1);
if (!pkg1_id) {
EPRINTF("Unknown pkg1 version.");
goto out_wait;
}
bool found_tsec_fw = false;
for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32)) {
if (*pos == 0xCF42004D) {
tsec_ctxt.fw = (u8 *)pos;
found_tsec_fw = true;
break;
}
}
if (!found_tsec_fw) {
EPRINTF("Failed to locate TSEC firmware.");
goto out_wait;
}
tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR);
tsec_ctxt.pkg1 = pkg1;
tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size;
u32 MAX_KEY = 6;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) {
MAX_KEY = pkg1_id->kb + 1;
}
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) {
// sd_mount();
// if (!f_stat("sd:/sept/payload.bak", NULL)) {
// f_unlink("sd:/sept/payload.bin");
// f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin");
// }
// if (!h_cfg.sept_run) {
// // bundle lp0 fw for sept instead of loading it from SD as hekate does
// sdram_lp0_save_params(sdram_get_params_patched());
// FIL fp;
// if (f_stat("sd:/sept", NULL)) {
// EPRINTF("On firmware 7.x+ but Sept missing.\nSkipping new key derivation...");
// goto get_tsec;
// }
// // backup post-reboot payload
// if (!f_stat("sd:/sept/payload.bin", NULL))
// f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak");
// // write self to payload.bin to run again when sept finishes
// f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE);
// u32 payload_size = *(u32 *)(IPL_LOAD_ADDR + 0x84) - IPL_LOAD_ADDR;
// f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL);
// f_close(&fp);
// gfx_printf("%k\nFirmware 7.x or higher detected.\n%kRenamed /sept/payload.bin", colors[(color_idx) % 6], colors[(color_idx + 1) % 6]);
// color_idx += 2;
// gfx_printf("\n%k to /sept/payload.bak\n%kCopied self to /sept/payload.bin", colors[(color_idx) % 6], colors[(color_idx + 1) % 6]);
// color_idx += 2;
// sdmmc_storage_end(&storage);
// if (!reboot_to_sept((u8 *)tsec_ctxt.fw, tsec_ctxt.size, pkg1_id->kb))
// goto out_wait;
// } else {
se_aes_key_read(12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10);
// }
}
//get_tsec: ;
u8 tsec_keys[0x10 * 2] = {0};
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) {
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size);
tsec_ctxt.fw = tsec_paged;
}
int res = 0;
mc_disable_ahb_redirect();
while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) {
memset(tsec_keys, 0x00, 0x20);
retries++;
if (retries > 15) {
res = -1;
break;
}
}
free(pkg1);
mc_enable_ahb_redirect();
if (res < 0) {
EPRINTFARGS("ERROR %x dumping TSEC.\n", res);
goto out_wait;
}
TPRINTFARGS("%kTSEC key(s)... ", colors[(color_idx++) % 6]);
// Master key derivation
if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) {
se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot)
se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]);
se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks)
se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source);
}
// if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) {
// // derive all lower master keys in case keyblobs are bad
// if (_key_exists(master_key[pkg1_id->kb])) {
// for (u32 i = pkg1_id->kb; i > 0; i--) {
// se_aes_key_set(8, master_key[i], 0x10);
// se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]);
// }
// se_aes_key_set(8, master_key[0], 0x10);
// se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]);
// if (_key_exists(temp_key)) {
// EPRINTFARGS("Failed to derive master key. kb = %d", pkg1_id->kb);
// }
// } else if (_key_exists(master_key[KB_FIRMWARE_VERSION_MAX])) {
// // handle sept version differences
// for (u32 kb = KB_FIRMWARE_VERSION_MAX; kb >= KB_FIRMWARE_VERSION_620; kb--) {
// for (u32 i = kb; i > 0; i--) {
// se_aes_key_set(8, master_key[i], 0x10);
// se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]);
// }
// se_aes_key_set(8, master_key[0], 0x10);
// se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]);
// if (!_key_exists(temp_key)) {
// break;
// }
// memcpy(master_key[kb-1], master_key[kb], 0x10);
// memcpy(master_key[kb], zeros, 0x10);
// }
// if (_key_exists(temp_key)) {
// EPRINTF("Failed to derive master key.");
// }
// }
// }
u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
u8 keyblob_mac[0x10] = {0};
u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1),
FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)};
se_aes_key_set(8, tsec_keys, 0x10);
se_aes_key_set(9, sbk, 0x10);
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++) {
se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec)
se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk)
se_aes_key_set(7, keyblob_key[i], 0x10);
se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
if (i == 0) {
se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
se_aes_crypt_block_ecb(7, 0, new_device_key, per_console_key_source_4x);
}
// verify keyblob is not corrupt
emummc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block);
se_aes_key_set(3, keyblob_mac_key[i], 0x10);
se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0);
if (memcmp(keyblob_block, keyblob_mac, 0x10)) {
EPRINTFARGS("Keyblob %x corrupt.", i);
gfx_hexdump(i, keyblob_block, 0x10);
gfx_hexdump(i, keyblob_mac, 0x10);
continue;
}
// decrypt keyblobs
se_aes_key_set(2, keyblob_key[i], 0x10);
se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10);
memcpy(package1_key[i], keyblob[i] + 0x80, 0x10);
memcpy(master_kek[i], keyblob[i], 0x10);
se_aes_key_set(7, master_kek[i], 0x10);
se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source);
}
free(keyblob_block);
TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]);
/* key = unwrap(source, wrapped_key):
key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key
*/
u32 key_generation = 0;
if (pkg1_id->kb >= KB_FIRMWARE_VERSION_500) {
if ((fuse_read_odm(4) & 0x800) && fuse_read_odm(0) == 0x8E61ECAE && fuse_read_odm(1) == 0xF2BA3BB2) {
key_generation = fuse_read_odm(2) & 0x1F;
}
}
if (_key_exists(device_key)) {
if (key_generation) {
se_aes_key_set(8, new_device_key, 0x10);
se_aes_crypt_block_ecb(8, 0, temp_key, new_device_key_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]);
se_aes_key_set(8, master_key[0], 0x10);
se_aes_unwrap_key(8, 8, new_device_keygen_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]);
se_aes_crypt_block_ecb(8, 0, temp_key, temp_key);
} else
memcpy(temp_key, device_key, 0x10);
se_aes_key_set(8, temp_key, 0x10);
se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10);
// kek = generate_kek(bkeks, devkey, aeskek, aeskey)
_generate_kek(8, bis_kek_source, temp_key, aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek)
se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00);
se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10);
memcpy(bis_key[3], bis_key[2], 0x20);
}
// Dump package2.
// u8 *pkg2 = NULL;
// pkg2_kip1_info_t *ki = NULL;
emummc_storage_set_mmc_partition(&storage, 0);
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &storage);
// Find package2 partition.
prodinfo_part = nx_emmc_part_find(&gpt, "PRODINFO");
if (!prodinfo_part) {
EPRINTF("Failed to locate PRODINFO.");
goto dismount;
}
// Read in package2 header and get package2 real size.
// u8 *tmp_copy = (u8 *)malloc(NX_EMMC_BLOCKSIZE*2);
// nx_emmc_part_read(&storage, prodinfo_part, 0, 2, tmp);
// memcpy(tmp_copy, tmp, NX_EMMC_BLOCKSIZE*2);
// gfx_hexdump(0, tmp + 0x250, 0x18);
// aes_xtsn_decrypt(tmp_copy, NX_EMMC_BLOCKSIZE*2, bis_key[0], bis_key[0] + 0x10, pkg2_part->lba_end, pkg2_part->lba_start, NX_EMMC_BLOCKSIZE);
// gfx_hexdump(0, tmp_copy + 0x250, 0x18);
// memcpy(tmp_copy, tmp, NX_EMMC_BLOCKSIZE*2);
se_aes_key_set(8, bis_key[0] + 0x00, 0x10);
se_aes_key_set(9, bis_key[0] + 0x10, 0x10);
//u32 length = 0x18;
u8 buffer[0x18];// = (u8 *)malloc(length);
readData(buffer, 0x250, sizeof(buffer));
// const char junkSerial[] = "XAJ40030770863";
// gfx_hexdump(0, (u8 *)junkSerial, strlen(junkSerial));
// writeData((u8 *)junkSerial, 0x250, strlen(junkSerial));
gfx_hexdump(0, buffer, sizeof(buffer));
//free(buffer);
// restore();
// verify();
u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
u8 *tmp_dec = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
nx_emmc_part_read(&storage, prodinfo_part, 0, 1, tmp);
aes_xts_ctxt_t context;
aes_xts_init(&context, AES_DECRYPT, bis_key[0], bis_key[0] + 0x10, 128);
aes_xts_crypt(&context, 0, NX_EMMC_BLOCKSIZE, tmp, tmp_dec);
gfx_hexdump(0, tmp_dec, 0x10);
aes_xts_crypt(&context, prodinfo_part->lba_start, NX_EMMC_BLOCKSIZE, tmp, tmp_dec);
gfx_hexdump(0, tmp_dec, 0x10);
se_aes_xts_crypt_sec(9, 8, 0, 0, tmp_dec, tmp, NX_EMMC_BLOCKSIZE);
gfx_hexdump(0, tmp_dec, 0x10);
se_aes_xts_crypt_sec(9, 8, 0, prodinfo_part->lba_start, tmp_dec, tmp, NX_EMMC_BLOCKSIZE);
gfx_hexdump(0, tmp_dec, 0x10);
// writeClientCertHash();
// writeCal0Hash();
// verify();
// verify();
// free(tmp_copy);
// pkg2_done:
// // free(pkg2);
// // free(ki);
// TPRINTFARGS("%kFS keys... ", colors[(color_idx++) % 6]);
// // DIR dir;
// // FILINFO fno;
// // FIL fp;
// // f_closedir(&dir);
// // f_close(&fp);
// TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]);
dismount:
nx_emmc_gpt_free(&gpt);
emummc_storage_end(&storage);
//key_output: ;
// __attribute__ ((aligned (16))) char text_buffer[0x3000] = {0};
// SAVE_KEY("aes_kek_generation_source", aes_kek_generation_source, 0x10);
// SAVE_KEY("aes_key_generation_source", aes_key_generation_source, 0x10);
// SAVE_KEY("bis_kek_source", bis_kek_source, 0x10);
// SAVE_KEY_FAMILY("bis_key", bis_key, 4, 0x20);
// SAVE_KEY_FAMILY("bis_key_source", bis_key_source, 3, 0x20);
// SAVE_KEY("device_key", device_key, 0x10);
// SAVE_KEY("eticket_rsa_kek", eticket_rsa_kek, 0x10);
// SAVE_KEY("eticket_rsa_kek_source", es_keys[0], 0x10);
// SAVE_KEY("eticket_rsa_kekek_source", es_keys[1], 0x10);
// SAVE_KEY("header_kek_source", fs_keys[0], 0x10);
// SAVE_KEY("header_key", header_key, 0x20);
// SAVE_KEY("header_key_source", fs_keys[1], 0x20);
// SAVE_KEY_FAMILY("key_area_key_application", key_area_key[0], MAX_KEY, 0x10);
// SAVE_KEY("key_area_key_application_source", fs_keys[2], 0x10);
// SAVE_KEY_FAMILY("key_area_key_ocean", key_area_key[1], MAX_KEY, 0x10);
// SAVE_KEY("key_area_key_ocean_source", fs_keys[3], 0x10);
// SAVE_KEY_FAMILY("key_area_key_system", key_area_key[2], MAX_KEY, 0x10);
// SAVE_KEY("key_area_key_system_source", fs_keys[4], 0x10);
// SAVE_KEY_FAMILY("keyblob", keyblob, 6, 0x90);
// SAVE_KEY_FAMILY("keyblob_key", keyblob_key, 6, 0x10);
// SAVE_KEY_FAMILY("keyblob_key_source", keyblob_key_source, 6, 0x10);
// SAVE_KEY_FAMILY("keyblob_mac_key", keyblob_mac_key, 6, 0x10);
// SAVE_KEY("keyblob_mac_key_source", keyblob_mac_key_source, 0x10);
// SAVE_KEY_FAMILY("master_kek", master_kek, MAX_KEY, 0x10);
// SAVE_KEY("master_kek_source_06", master_kek_sources[0], 0x10);
// SAVE_KEY("master_kek_source_07", master_kek_sources[1], 0x10);
// SAVE_KEY("master_kek_source_08", master_kek_sources[2], 0x10);
// SAVE_KEY("master_kek_source_09", master_kek_sources[3], 0x10);
// SAVE_KEY_FAMILY("master_key", master_key, MAX_KEY, 0x10);
// SAVE_KEY("master_key_source", master_key_source, 0x10);
// SAVE_KEY_FAMILY("package1_key", package1_key, 6, 0x10);
// SAVE_KEY_FAMILY("package2_key", package2_key, MAX_KEY, 0x10);
// SAVE_KEY("package2_key_source", package2_key_source, 0x10);
// SAVE_KEY("per_console_key_source", per_console_key_source, 0x10);
// SAVE_KEY("retail_specific_aes_key_source", retail_specific_aes_key_source, 0x10);
// for (u32 i = 0; i < 0x10; i++)
// temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i];
// SAVE_KEY("rsa_oaep_kek_generation_source", temp_key, 0x10);
// for (u32 i = 0; i < 0x10; i++)
// temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i];
// SAVE_KEY("rsa_private_kek_generation_source", temp_key, 0x10);
// SAVE_KEY("save_mac_kek_source", fs_keys[5], 0x10);
// SAVE_KEY("save_mac_key", save_mac_key, 0x10);
// SAVE_KEY("save_mac_key_source", fs_keys[6], 0x10);
// SAVE_KEY("sd_card_kek_source", fs_keys[7], 0x10);
// SAVE_KEY("sd_card_nca_key_source", fs_keys[8], 0x20);
// SAVE_KEY("sd_card_save_key_source", fs_keys[9], 0x20);
// SAVE_KEY("sd_seed", sd_seed, 0x10);
// SAVE_KEY("secure_boot_key", sbk, 0x10);
// SAVE_KEY("ssl_rsa_kek", ssl_rsa_kek, 0x10);
// SAVE_KEY("ssl_rsa_kek_source_x", es_keys[2], 0x10);
// SAVE_KEY("ssl_rsa_kek_source_y", ssl_keys[1], 0x10);
// SAVE_KEY_FAMILY("titlekek", titlekek, MAX_KEY, 0x10);
// SAVE_KEY("titlekek_source", titlekek_source, 0x10);
// SAVE_KEY("tsec_key", tsec_keys, 0x10);
// if (pkg1_id->kb == KB_FIRMWARE_VERSION_620)
// SAVE_KEY("tsec_root_key", tsec_keys + 0x10, 0x10);
//gfx_con.fntsz = 8; gfx_puts(text_buffer); gfx_con.fntsz = 16;
end_time = get_tmr_us();
gfx_printf("\n%kFound %d keys.", colors[(color_idx++) % 6], _key_count);
_key_count = 0;
gfx_printf("\n%kLockpick totally done in %d us", colors[(color_idx++) % 6], end_time - begin_time);
gfx_printf("\n%kFound through master_key_%02x\n", colors[(color_idx++) % 6], MAX_KEY - 1);
// f_mkdir("sd:/switch");
// char keyfile_path[30] = "sd:/switch/";
// if (!(fuse_read_odm(4) & 3))
// sprintf(&keyfile_path[11], "prod.keys");
// else
// sprintf(&keyfile_path[11], "dev.keys");
// if (sd_mount() && !sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) {
// gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path);
// } else
// EPRINTF("Failed to save keys to SD.");
h_cfg.emummc_force_disable = emummc_load_cfg();
out_wait:
// sd_unmount();
gfx_printf("\n%kPress any key to return to the main menu.", colors[(color_idx) % 6], colors[(color_idx + 1) % 6], colors[(color_idx + 2) % 6]);
btn_wait();
}
// static void _save_key(const char *name, const void *data, const u32 len, char *outbuf) {
// if (!_key_exists(data))
// return;
// u32 pos = strlen(outbuf);
// pos += sprintf(&outbuf[pos], "%s = ", name);
// for (u32 i = 0; i < len; i++)
// pos += sprintf(&outbuf[pos], "%02x", *(u8*)(data + i));
// sprintf(&outbuf[pos], "\n");
// _key_count++;
// }
// static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf) {
// char temp_name[0x40] = {0};
// for (u32 i = 0; i < num_keys; i++) {
// sprintf(temp_name, "%s_%02x", name, i);
// _save_key(temp_name, data + i * len, len, outbuf);
// }
// }
static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) {
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
return;
se_aes_key_set(ks, master_key, 0x10);
se_aes_unwrap_key(ks, ks, kek_seed);
se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed))
se_aes_unwrap_key(ks, ks, key_seed);
}
static inline u32 _read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
// static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len) {
// u32 read_bytes = 0, crypt_offset, read_size, num_files, string_table_size, rodata_offset;
// u8 *temp_file = (u8*)malloc(0x400),
// ctr[0x10] = {0};
// if (f_lseek(fp, 0x200) || f_read(fp, temp_file, 0x400, &read_bytes) || read_bytes != 0x400)
// return NULL;
// se_aes_xts_crypt(hk_ks1, hk_ks2, 0, 1, temp_file, temp_file, 0x200, 2);
// // both 1.x and 2.x use master_key_00
// temp_file[0x20] -= temp_file[0x20] ? 1 : 0;
// // decrypt key area and load decrypted key area key
// se_aes_key_set(7, key_area_key[temp_file[7]][temp_file[0x20]], 0x10);
// se_aes_crypt_block_ecb(7, 0, temp_file + 0x120, temp_file + 0x120);
// se_aes_key_set(2, temp_file + 0x120, 0x10);
// for (u32 i = 0; i < 8; i++)
// ctr[i] = temp_file[0x347 - i];
// crypt_offset = _read_le_u32(temp_file, 0x40) * 0x200 + _read_le_u32(temp_file, 0x240);
// read_size = 0x10;
// _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr);
// num_files = _read_le_u32(temp_file, 4);
// string_table_size = _read_le_u32(temp_file, 8);
// if (!memcmp(temp_file + 0x10 + num_files * 0x18, "main.npdm", 9))
// crypt_offset += _read_le_u32(temp_file, 0x18);
// crypt_offset += 0x10 + num_files * 0x18 + string_table_size;
// read_size = 0x40;
// _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr);
// rodata_offset = _read_le_u32(temp_file, 0x20);
// void *buf = malloc(len);
// _nca_fread_ctr(2, fp, buf, crypt_offset + rodata_offset + key_offset, len, ctr);
// free(temp_file);
// return buf;
// }
// static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr) {
// u32 br;
// if (f_lseek(fp, offset) || f_read(fp, buffer, len, &br) || br != len)
// return 0;
// _update_ctr(ctr, offset);
// if (offset % 0x10) {
// u8 *temp = (u8*)malloc(ALIGN(br + offset % 0x10, 0x10));
// memcpy(temp + offset % 0x10, buffer, br);
// se_aes_crypt_ctr(ks, temp, ALIGN(br + offset % 0x10, 0x10), temp, ALIGN(br + offset % 0x10, 0x10), ctr);
// memcpy(buffer, temp + offset % 0x10, br);
// free(temp);
// return br;
// }
// se_aes_crypt_ctr(ks, buffer, br, buffer, br, ctr);
// return br;
// }
// static void _update_ctr(u8 *ctr, u32 ofs) {
// ofs >>= 4;
// for (u32 i = 0; i < 4; i++, ofs >>= 8)
// ctr[0x10-i-1] = (u8)(ofs & 0xff);
// }
bool readData(u8 *buffer, u32 offset, u32 length)
{
u32 sector = (offset / NX_EMMC_BLOCKSIZE);
u32 newOffset = (offset % NX_EMMC_BLOCKSIZE);
u8 sectorCount = ((newOffset + length - 1) / (NX_EMMC_BLOCKSIZE)) + 1;
// if(length + newOffset > NX_EMMC_BLOCKSIZE * 2){
// EPRINTF("TOO BIG!!");
// }
//bool needMultipleSectors = newOffset + length > NX_EMMC_BLOCKSIZE;
u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
disk_read_prod(tmp, sector, sectorCount);
// if (!needMultipleSectors)
// {
// gfx_hexdump(0, tmp + newOffset, length);
memcpy(buffer, tmp + newOffset, length);
// }
// else
// {
// u32 newLength = (newOffset + length) - NX_EMMC_BLOCKSIZE;
// memcpy(buffer, tmp + newOffset, newLength);
// disk_read_mod(tmp, sector + 1, 1, &storage, prodinfo_part);
// memcpy(buffer + newLength, tmp, length - newLength);
// }
free(tmp);
return true;
}
bool writeData(u8 *buffer, u32 offset, u32 length)
{
u32 sector = (offset / NX_EMMC_BLOCKSIZE);
u32 newOffset = (offset % NX_EMMC_BLOCKSIZE);
u8 sectorCount = ((newOffset + length - 1) / (NX_EMMC_BLOCKSIZE)) + 1;
// if(length + newOffset > NX_EMMC_BLOCKSIZE * 2){
// EPRINTF("TOO BIG!!");
// }
//bool needMultipleSectors = newOffset + length > NX_EMMC_BLOCKSIZE;
u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
disk_read_prod(tmp, sector, sectorCount);
// if (!needMultipleSectors)
// {
// gfx_hexdump(0, tmp + newOffset, length);
memcpy(tmp + newOffset, buffer, length);
disk_write_prod(tmp, sector, sectorCount);
// }
// else
// {
// u32 newLength = (newOffset + length) - NX_EMMC_BLOCKSIZE;
// memcpy(buffer, tmp + newOffset, newLength);
// disk_read_mod(tmp, sector + 1, 1, &storage, prodinfo_part);
// memcpy(buffer + newLength, tmp, length - newLength);
// }
free(tmp);
return true;
}
bool writeHash(u32 hashOffset, u32 offset, u32 sz)
{
u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
SHA256_CTX ctx;
sha256_init(&ctx);
u32 newOffset = offset % NX_EMMC_BLOCKSIZE;
if (newOffset > 0 && newOffset + sz >= NX_EMMC_BLOCKSIZE)
{
u32 toRead = NX_EMMC_BLOCKSIZE - newOffset;
readData(buffer, offset, toRead);
// gfx_hexdump(0, buffer + NX_EMMC_BLOCKSIZE - 8, 8);
sha256_update(&ctx, buffer, toRead);
sz -= toRead;
offset += toRead;
}
while (sz > NX_EMMC_BLOCKSIZE)
{
readData(buffer, offset, NX_EMMC_BLOCKSIZE);
// gfx_hexdump(0, buffer + NX_EMMC_BLOCKSIZE - 8, 8);
sha256_update(&ctx, buffer, NX_EMMC_BLOCKSIZE);
sz -= NX_EMMC_BLOCKSIZE;
offset += NX_EMMC_BLOCKSIZE;
}
if (sz > 0)
{
readData(buffer, offset, sz);
sha256_update(&ctx, buffer, sz);
}
u8 hash[0x20];
sha256_final(&ctx, hash);
writeData(hash, hashOffset, 0x20);
free(buffer);
return true;
}
bool verifyHash(u32 hashOffset, u32 offset, u32 sz)
{
bool result = false;
u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
SHA256_CTX ctx;
sha256_init(&ctx);
u32 newOffset = offset % NX_EMMC_BLOCKSIZE;
if (newOffset > 0 && newOffset + sz >= NX_EMMC_BLOCKSIZE)
{
u32 toRead = NX_EMMC_BLOCKSIZE - newOffset;
readData(buffer, offset, toRead);
// gfx_hexdump(0, buffer + NX_EMMC_BLOCKSIZE - 8, 8);
sha256_update(&ctx, buffer, toRead);
sz -= toRead;
offset += toRead;
}
while (sz > NX_EMMC_BLOCKSIZE)
{
readData(buffer, offset, NX_EMMC_BLOCKSIZE);
// gfx_hexdump(0, buffer + NX_EMMC_BLOCKSIZE - 8, 8);
sha256_update(&ctx, buffer, NX_EMMC_BLOCKSIZE);
sz -= NX_EMMC_BLOCKSIZE;
offset += NX_EMMC_BLOCKSIZE;
}
if (sz > 0)
{
readData(buffer, offset, sz);
sha256_update(&ctx, buffer, sz);
}
u8 hash1[0x20];
sha256_final(&ctx, hash1);
u8 hash2[0x20];
//se_calc_sha256(hash1, buffer, sz);
//sha256CalculateHash(hash1, buffer, sz);
readData(hash2, hashOffset, 0x20);
if (memcmp(hash1, hash2, 0x20))
{
EPRINTF("error: hash verification failed\n");
}
else
{
result = true;
}
gfx_hexdump(0, hash1, 0x20);
gfx_hexdump(0, hash2, 0x20);
free(buffer);
return result;
}
u32 certSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x0AD0, sizeof(buffer));
// EPRINTF("certSize");
// gfx_hexdump(0, (u8 *)&buffer, sizeof(buffer));
return buffer;
}
u32 calibrationDataSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x08, sizeof(buffer));
// EPRINTF("calSize");
// gfx_hexdump(0, (u8 *)&buffer, sizeof(buffer));
return buffer;
}
bool writeCal0Hash()
{
return writeHash(0x20, 0x40, calibrationDataSize());
}
bool writeClientCertHash()
{
return writeHash(0x12E0, 0xAE0, certSize());
}
bool verifyCal0Hash(){
return verifyHash(0x20, 0x40, calibrationDataSize());
}
bool verifyClientCertHash()
{
return verifyHash(0x12E0, 0xAE0, certSize());
}
bool verify()
{
return verifyClientCertHash() & verifyCal0Hash();
// bool r = verifyHash(0x12E0, 0xAE0, certSize()); // client cert hash
// r &= verifyHash(0x20, 0x40, calibrationDataSize()); // calibration hash
// return r;
}
void backup(){
sd_mount();
if (f_stat("sd:/prodinfo.bin", NULL)){
f_unlink("sd:/prodinfo.bin");
}
FIL fp;
f_open(&fp, "sd:/prodinfo.bin", FA_CREATE_NEW | FA_WRITE);
u8 bufferNX[NX_EMMC_BLOCKSIZE];
u32 size = 0x3FBC00;
u32 offset = 0;
while(size > NX_EMMC_BLOCKSIZE){
readData(bufferNX, offset, NX_EMMC_BLOCKSIZE);
f_write(&fp, bufferNX, NX_EMMC_BLOCKSIZE, NULL);
offset += NX_EMMC_BLOCKSIZE;
size -= NX_EMMC_BLOCKSIZE;
}
if(size > 0){
readData(bufferNX, offset, size);
f_write(&fp, bufferNX, size, NULL);
}
f_close(&fp);
gfx_printf("\n%kBackup unecrypted done!", 4);
if (f_stat("sd:/prodinfoENC.bin", NULL)){
f_unlink("sd:/prodinfoENC.bin");
}
f_open(&fp, "sd:/prodinfoENC.bin", FA_CREATE_NEW | FA_WRITE);
size = 0x3FBC00;
offset = 0;
while(size > 0){
nx_emmc_part_read(&storage, prodinfo_part, offset, 1, bufferNX);
f_write(&fp, bufferNX, NX_EMMC_BLOCKSIZE, NULL);
offset ++;
size -= NX_EMMC_BLOCKSIZE;
}
// if(size > 0){
// nx_emmc_part_read(&storage, prodinfo_part, offset, 1, bufferNX);
// f_write(&fp, bufferNX, size, NULL);
// }
f_close(&fp);
gfx_printf("\n%kBackup encrypted done!", colors[4]);
}
bool restore(){
FIL fp;
if(f_open(&fp, "sd:/prodinfoENC.bin", FA_READ) != FR_OK){
gfx_printf("\n%Cannot open prodinfEnc.bin!", 4);
return false;
}
u8 bufferNX[NX_EMMC_BLOCKSIZE];
u32 size = 0x3FBC00;
u32 offset = 0;
while(size > 0){
f_read(&fp, bufferNX, NX_EMMC_BLOCKSIZE, NULL);
nx_emmc_part_write(&storage, prodinfo_part, offset, 1, bufferNX);
offset ++;
size -= NX_EMMC_BLOCKSIZE;
}
// if(size > 0){
// f_read(&fp, bufferNX, size, NULL);
// nx_emmc_part_write(&storage, prodinfo_part, offset, 1, bufferNX);
// f_write(&fp, bufferNX, size, NULL);
// }
f_close(&fp);
gfx_printf("\n%Restore encrypted done!", 4);
return true;
}
// bool erase(u32 offset, u32 sz)
// {
// u8 zero = 0;
// for (u64 i = 0; i < sz; i++)
// {
// fsStorageWrite(&m_sh, offset + i, &zero, 1);
// }
// return true;
// }