1
0
Fork 0
mirror of https://github.com/s1204IT/Lockpick_RCM.git synced 2024-11-22 09:46:41 +00:00

keys: Refactor key crypto, fix SSL key dumping

This commit is contained in:
shchmue 2022-10-29 15:11:13 -07:00
parent 5768fba4a7
commit e8d66f318d
4 changed files with 398 additions and 180 deletions

View file

@ -721,31 +721,31 @@ out:;
// _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère // _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère
static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size) static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size)
{ {
u8 cur_hash[0x20] __attribute__((aligned(4))); u8 cur_hash[0x20] __attribute__((aligned(4)));
u8 hash_buf[0xe4] __attribute__((aligned(4))); u8 hash_buf[0xe4] __attribute__((aligned(4)));
u32 hash_buf_size = seed_size + 4; u32 hash_buf_size = seed_size + 4;
memcpy(hash_buf, seed, seed_size); memcpy(hash_buf, seed, seed_size);
u32 round_num = 0; u32 round_num = 0;
u8 *p_out = (u8 *)masked; u8 *p_out = (u8 *)masked;
while (masked_size) { while (masked_size) {
u32 cur_size = MIN(masked_size, 0x20); u32 cur_size = MIN(masked_size, 0x20);
for (u32 i = 0; i < 4; i++) for (u32 i = 0; i < 4; i++)
hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff; hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff;
round_num++; round_num++;
se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size); se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size);
for (unsigned int i = 0; i < cur_size; i++) { for (unsigned int i = 0; i < cur_size; i++) {
*p_out ^= cur_hash[i]; *p_out ^= cur_hash[i];
p_out++; p_out++;
} }
masked_size -= cur_size; masked_size -= cur_size;
} }
} }
u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size) u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size)

View file

@ -100,12 +100,15 @@ static const u8 mariko_key_vectors[][0x10] __attribute__((aligned(4))) = {
// from Package1 -> Secure_Monitor // from Package1 -> Secure_Monitor
static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = { static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = {
0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9}; 0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9};
static const u8 aes_seal_key_mask_decrypt_device_unique_data[0x10] __attribute__((aligned(4))) = { static const u8 seal_key_masks[][0x10] __attribute__((aligned(4))) = {
0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}; {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // SealKey_LoadAesKey
static const u8 aes_seal_key_mask_import_es_device_key[0x10] __attribute__((aligned(4))) = { {0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}, // SealKey_DecryptDeviceUniqueData
0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}; {0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C}, // SealKey_ImportLotusKey
static const u8 aes_seal_key_mask_decrypt_ssl_client_cert_key[0x10] __attribute__((aligned(4))) = { {0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}, // SealKey_ImportEsDeviceKey
0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}; {0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31}, // SealKey_ReencryptDeviceUniqueData
{0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}, // SealKey_ImportSslKey
{0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61}, // SealKey_ImportEsClientCertKey
};
static const u8 package2_key_source[0x10] __attribute__((aligned(4))) = { static const u8 package2_key_source[0x10] __attribute__((aligned(4))) = {
0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7}; 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7};
static const u8 titlekek_source[0x10] __attribute__((aligned(4))) = { static const u8 titlekek_source[0x10] __attribute__((aligned(4))) = {
@ -181,12 +184,14 @@ static const u8 eticket_rsa_kekek_source[0x10] __attribute__((aligned(4))) = {
0X46, 0X6E, 0X57, 0XB7, 0X4A, 0X44, 0X7F, 0X02, 0XF3, 0X21, 0XCD, 0XE5, 0X8F, 0X2F, 0X55, 0X35}; 0X46, 0X6E, 0X57, 0XB7, 0X4A, 0X44, 0X7F, 0X02, 0XF3, 0X21, 0XCD, 0XE5, 0X8F, 0X2F, 0X55, 0X35};
// from SSL // from SSL
static const u8 ssl_rsa_kek_source_x[0x10] __attribute__((aligned(4))) = { static const u8 ssl_rsa_kekek_source[0x10] __attribute__((aligned(4))) = {
0X7F, 0X5B, 0XB0, 0X84, 0X7B, 0X25, 0XAA, 0X67, 0XFA, 0XC8, 0X4B, 0XE2, 0X3D, 0X7B, 0X69, 0X03}; 0X7F, 0X5B, 0XB0, 0X84, 0X7B, 0X25, 0XAA, 0X67, 0XFA, 0XC8, 0X4B, 0XE2, 0X3D, 0X7B, 0X69, 0X03};
static const u8 ssl_rsa_kek_source_y[0x10] __attribute__((aligned(4))) = { static const u8 ssl_rsa_kek_source[0x10] __attribute__((aligned(4))) = {
0X9A, 0X38, 0X3B, 0XF4, 0X31, 0XD0, 0XBD, 0X81, 0X32, 0X53, 0X4B, 0XA9, 0X64, 0X39, 0X7D, 0XE3}; 0X9A, 0X38, 0X3B, 0XF4, 0X31, 0XD0, 0XBD, 0X81, 0X32, 0X53, 0X4B, 0XA9, 0X64, 0X39, 0X7D, 0XE3};
static const u8 ssl_rsa_kek_source_y_dev[0x10] __attribute__((aligned(4))) = { static const u8 ssl_rsa_kek_source_dev[0x10] __attribute__((aligned(4))) = {
0xD5, 0xD2, 0xFC, 0x00, 0xFD, 0x49, 0xDD, 0xF8, 0xEE, 0x7B, 0xC4, 0x4B, 0xE1, 0x4C, 0xAA, 0x99}; 0xD5, 0xD2, 0xFC, 0x00, 0xFD, 0x49, 0xDD, 0xF8, 0xEE, 0x7B, 0xC4, 0x4B, 0xE1, 0x4C, 0xAA, 0x99};
static const u8 ssl_rsa_kek_source_legacy[0x10] __attribute__((aligned(4))) = {
0xED, 0x36, 0xB1, 0x32, 0x27, 0x17, 0xD2, 0xB0, 0xBA, 0x1F, 0xC1, 0xBD, 0x4D, 0x38, 0x0F, 0x5E};
static const u8 ssl_client_cert_kek_source[0x10] __attribute__((aligned(4))) = { static const u8 ssl_client_cert_kek_source[0x10] __attribute__((aligned(4))) = {
0x64, 0xB8, 0x30, 0xDD, 0x0F, 0x3C, 0xB7, 0xFB, 0x4C, 0x16, 0x01, 0x97, 0xEA, 0x9D, 0x12, 0x10}; 0x64, 0xB8, 0x30, 0xDD, 0x0F, 0x3C, 0xB7, 0xFB, 0x4C, 0x16, 0x01, 0x97, 0xEA, 0x9D, 0x12, 0x10};
static const u8 ssl_client_cert_key_source[0x10] __attribute__((aligned(4))) = { static const u8 ssl_client_cert_key_source[0x10] __attribute__((aligned(4))) = {

View file

@ -73,10 +73,14 @@ static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; }; static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
static void _save_key(const char *name, const void *data, u32 len, char *outbuf); static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed); static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key); static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source);
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation); static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision); static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation);
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation);
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt);
// titlekey functions // titlekey functions
static bool _test_key_pair(const void *E, const void *D, const void *N); static bool _test_key_pair(const void *E, const void *D, const void *N);
@ -87,8 +91,7 @@ static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) {
for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) { for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) {
// Relies on the Mariko KEK being properly set in slot 12 // Relies on the Mariko KEK being properly set in slot 12
se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source) se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source)
se_aes_key_set(8, keys->master_kek[i], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) _load_aes_key(8, keys->master_key[i], keys->master_kek[i], master_key_source);
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i], master_key_source);
} }
} }
@ -116,18 +119,15 @@ static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool
// Derive all master keys based on current root key // Derive all master keys based on current root key
for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) { for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) {
se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks) se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks)
se_aes_key_set(8, keys->master_kek[i + KB_FIRMWARE_VERSION_620], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) _load_aes_key(8, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source);
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i + KB_FIRMWARE_VERSION_620], master_key_source);
} }
} }
// Derive all lower master keys // Derive all lower master keys
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); _load_aes_key(8, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i - 1], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
} }
se_aes_key_set(8, keys->master_key[0], AES_128_KEY_SIZE); _load_aes_key(8, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
se_aes_crypt_block_ecb(8, DECRYPT, keys->temp_key, is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
if (_key_exists(keys->temp_key)) { if (_key_exists(keys->temp_key)) {
EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod"); EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod");
@ -166,8 +166,7 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
minerva_periodic_training(); minerva_periodic_training();
se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec)
se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk) se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk)
se_aes_key_set(7, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); _load_aes_key(7, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
se_aes_crypt_block_ecb(7, DECRYPT, keys->keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
if (i == 0) { if (i == 0) {
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
@ -191,82 +190,84 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i])); memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i]));
memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i])); memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i]));
se_aes_key_set(7, keys->master_kek[i], sizeof(keys->master_kek[i]));
if (!_key_exists(keys->master_key[i])) { if (!_key_exists(keys->master_key[i])) {
se_aes_crypt_block_ecb(7, DECRYPT, keys->master_key[i], master_key_source); _load_aes_key(7, keys->master_key[i], keys->master_kek[i], master_key_source);
} }
} }
free(keyblob_block); free(keyblob_block);
} }
static void _derive_bis_keys(key_derivation_ctx_t *keys) { static void _derive_bis_keys(key_derivation_ctx_t *keys) {
/* key = unwrap(source, wrapped_key):
key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key
*/
minerva_periodic_training(); minerva_periodic_training();
u32 key_generation = fuse_read_odm_keygen_rev(); u32 generation = fuse_read_odm_keygen_rev();
if (key_generation)
key_generation--;
if (!(_key_exists(keys->device_key) || (key_generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) { if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
return; return;
} }
_generate_specific_aes_key(8, keys, &keys->bis_key[0], &bis_key_sources[0], key_generation); _generate_specific_aes_key(8, keys, &keys->bis_key[0], bis_key_sources[0], generation);
// kek = generate_kek(bkeks, devkey, aeskek, aeskey) u32 access_key[AES_128_KEY_SIZE / 4] = {0};
_get_device_key(8, keys, keys->temp_key, key_generation); const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
_generate_kek(8, bis_kek_source, keys->temp_key, aes_kek_generation_source, aes_key_generation_source); _generate_aes_kek(8, keys, access_key, bis_kek_source, generation, option);
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[1], AES_128_KEY_SIZE * 2, bis_key_sources[1], AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) _generate_aes_key(8, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[2], AES_128_KEY_SIZE * 2, bis_key_sources[2], AES_128_KEY_SIZE * 2); _generate_aes_key(8, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
memcpy(keys->bis_key[3], keys->bis_key[2], 0x20); memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3]));
} }
static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) { static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->master_key[0])) { if (_key_exists(keys->master_key[0])) {
_generate_kek(8, header_kek_source, keys->master_key[0], aes_kek_generation_source, aes_key_generation_source); const u32 generation = 0;
se_aes_crypt_ecb(8, DECRYPT, keys->header_key, AES_128_KEY_SIZE * 2, header_key_source, AES_128_KEY_SIZE * 2); const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
_generate_aes_kek(8, keys, keys->temp_key, header_kek_source, generation, option);
_generate_aes_key(8, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source);
} }
} }
static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kek_source) { static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) {
u8 kek_seed[AES_128_KEY_SIZE]; void *access_key = keys->temp_key;
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) _generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option);
kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i]; _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
_generate_kek(ks, eticket_rsa_kekek_source, master_key, kek_seed, NULL);
se_aes_crypt_block_ecb(ks, DECRYPT, out_rsa_kek, kek_source);
} }
static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kekek_source, const void *kek_source) { static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
u8 kek_seed[AES_128_KEY_SIZE]; void *access_key = keys->temp_key;
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) _generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i]; _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
_generate_kek(8, kekek_source, master_key, kek_seed, NULL);
se_aes_crypt_block_ecb(8, DECRYPT, out_rsa_kek, kek_source);
} }
static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) { static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) { if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
_get_device_key(8, keys, keys->temp_key, 0); void *access_key = keys->temp_key;
_generate_kek(8, save_mac_kek_source, keys->temp_key, aes_kek_generation_source, NULL); const u32 generation = 0;
se_aes_crypt_block_ecb(8, DECRYPT, keys->save_mac_key, save_mac_key_source); const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
_generate_aes_kek(8, keys, access_key, save_mac_kek_source, generation, option);
_load_aes_key(8, keys->save_mac_key, access_key, save_mac_key_source);
} }
if (_key_exists(keys->master_key[0])) { if (_key_exists(keys->master_key[0])) {
_derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, keys->master_key[0], is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source); const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
_derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, keys->master_key[0], ssl_rsa_kek_source_x, is_dev ? ssl_rsa_kek_source_y_dev : ssl_rsa_kek_source_y); const u32 generation = 0;
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
_derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, eticket_kek_source, generation, option);
const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source;
option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
_derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option);
} }
} }
static void _derive_per_generation_keys(key_derivation_ctx_t *keys) { static void _derive_per_generation_keys(key_derivation_ctx_t *keys) {
for (u32 i = 0; i < KB_FIRMWARE_VERSION_MAX + 1; i++) { for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
if (!_key_exists(keys->master_key[i])) if (!_key_exists(keys->master_key[generation]))
continue; continue;
for (u32 j = 0; j < 3; j++) { for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
_generate_kek(8, key_area_key_sources[j], keys->master_key[i], aes_kek_generation_source, NULL); void *access_key = keys->temp_key;
se_aes_crypt_block_ecb(8, DECRYPT, keys->key_area_key[j][i], aes_key_generation_source); const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
_generate_aes_kek(8, keys, access_key, key_area_key_sources[source_type], generation + 1, option);
_load_aes_key(8, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source);
} }
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); _load_aes_key(8, keys->package2_key[generation], keys->master_key[generation], package2_key_source);
se_aes_crypt_block_ecb(8, DECRYPT, keys->package2_key[i], package2_key_source); _load_aes_key(8, keys->titlekek[generation], keys->master_key[generation], titlekek_source);
se_aes_crypt_block_ecb(8, DECRYPT, keys->titlekek[i], titlekek_source);
} }
} }
@ -343,6 +344,10 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return false; return false;
} }
if (is_personalized) {
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
}
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004; const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
offset = 0; offset = 0;
@ -467,6 +472,29 @@ static bool _read_cal0(void *read_buffer) {
return true; return true;
} }
static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18);
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ssl_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ssl_key_iv;
// settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) {
*out_key = cal0->ssl_key;
*out_key_size = key_size;
*out_iv = cal0->ssl_key_iv;
*out_generation = 0;
} else {
return false;
}
return true;
}
static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) { static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
if (!_read_cal0(titlekey_buffer->read_buffer)) { if (!_read_cal0(titlekey_buffer->read_buffer)) {
return false; return false;
@ -477,40 +505,59 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
const void *ssl_device_key = NULL; const void *ssl_device_key = NULL;
const void *ssl_iv = NULL; const void *ssl_iv = NULL;
u32 key_size = 0; u32 key_size = 0;
void *keypair_ctr_key = NULL;
bool enforce_unique = true;
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, 0x13E)) { if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &keypair_generation)) {
ssl_device_key = cal0->ext_ssl_key;
ssl_iv = cal0->ext_ssl_key_iv;
key_size = 0x120;
// settings sysmodule manually zeroes this out below cal version 9
keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, 0x11E)) {
ssl_device_key = cal0->ssl_key;
ssl_iv = cal0->ssl_key_iv;
key_size = 0x100;
} else {
EPRINTF("Crc16 error reading device key."); EPRINTF("Crc16 error reading device key.");
return false; return false;
} }
if (keypair_generation) { if (key_size == SSL_RSA_KEYPAIR_SIZE) {
keypair_generation--; bool all_zero = true;
_get_device_key(7, keys, keys->temp_key, keypair_generation); const u8 *key8 = (const u8 *)ssl_device_key;
_derive_ssl_rsa_kek(keys, 7, keys->ssl_rsa_kek_personalized, keys->temp_key, ssl_client_cert_kek_source, ssl_client_cert_key_source); for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEYPAIR_SIZE; i++) {
if (key8[i] != 0) {
all_zero = false;
break;
}
}
if (all_zero) {
// keypairs of this form are not encrypted
memcpy(keys->ssl_rsa_keypair, ssl_device_key, RSA_2048_KEY_SIZE);
return true;
}
memcpy(keys->temp_key, keys->ssl_rsa_kek_personalized, sizeof(keys->temp_key)); u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
} else { keypair_ctr_key = keys->ssl_rsa_kek_legacy;
memcpy(keys->temp_key, keys->ssl_rsa_kek, sizeof(keys->temp_key)); _derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, keypair_generation, option);
enforce_unique = false;
} }
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); if (keypair_generation) {
se_aes_crypt_ctr(6, &keys->ssl_rsa_key, sizeof(keys->ssl_rsa_key), ssl_device_key, sizeof(keys->ssl_rsa_key), ssl_iv); u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
keypair_ctr_key = keys->ssl_rsa_kek_personalized;
_derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, keypair_generation, option);
} else {
keypair_ctr_key = keys->ssl_rsa_kek;
}
if (key_size == 0x120) { u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10;
if (_key_exists(keys->ssl_rsa_key + 0x100)) { se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
EPRINTF("Invalid SSL key."); se_aes_crypt_ctr(6, keys->ssl_rsa_keypair, ctr_size, ssl_device_key, ctr_size, ssl_iv);
memset(&keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key));
if (enforce_unique) {
u32 j_block[AES_128_KEY_SIZE / 4] = {0};
se_aes_key_set(7, keypair_ctr_key, AES_128_KEY_SIZE);
_ghash(7, j_block, ssl_iv, 0x10, NULL, false);
u32 calc_mac[AES_128_KEY_SIZE / 4] = {0};
_ghash(7, calc_mac, keys->ssl_rsa_keypair, ctr_size, j_block, true);
const u8 *key8 = (const u8 *)ssl_device_key;
if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) {
EPRINTF("SSL keypair has invalid GMac.");
memset(keys->ssl_rsa_keypair, 0, sizeof(keys->ssl_rsa_keypair));
return false; return false;
} }
} }
@ -518,6 +565,27 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
return true; return true;
} }
static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_key, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21);
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
*out_key = cal0->rsa2048_eticket_key;
*out_iv = cal0->rsa2048_eticket_key_iv;
*out_generation = 0;
} else {
return false;
}
return true;
}
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_key_exists(keys->eticket_rsa_kek)) { if (!_key_exists(keys->eticket_rsa_kek)) {
return false; return false;
@ -533,61 +601,51 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
u32 keypair_generation = 0; u32 keypair_generation = 0;
const void *eticket_device_key = NULL; const void *eticket_device_key = NULL;
const void *eticket_iv = NULL; const void *eticket_iv = NULL;
void *keypair_ctr_key = NULL;
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, 0x24E)) { if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &keypair_generation)) {
eticket_device_key = cal0->ext_ecc_rsa2048_eticket_key;
eticket_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// settings sysmodule manually zeroes this out below cal version 9
keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, 0x22E)) {
eticket_device_key = cal0->rsa2048_eticket_key;
eticket_iv = cal0->rsa2048_eticket_key_iv;
} else {
EPRINTF("Crc16 error reading device key."); EPRINTF("Crc16 error reading device key.");
return false; return false;
} }
if (keypair_generation) { if (keypair_generation) {
keypair_generation--; u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
_get_device_key(7, keys, keys->temp_key, keypair_generation); _derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, keypair_generation, option);
_derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, keys->temp_key, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source); keypair_ctr_key = keys->eticket_rsa_kek_personalized;
memcpy(keys->temp_key, keys->eticket_rsa_kek_personalized, sizeof(keys->temp_key));
} else { } else {
memcpy(keys->temp_key, keys->eticket_rsa_kek, sizeof(keys->temp_key)); keypair_ctr_key = keys->eticket_rsa_kek;
} }
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv); se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
// Check public exponent is 65537 big endian if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) {
// try legacy kek source // try legacy kek source
_derive_eticket_rsa_kek(keys, 7, keys->temp_key, keys->master_key[0], eticket_rsa_kek_source_legacy); u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
keypair_ctr_key = keys->temp_key;
_derive_eticket_rsa_kek(keys, 7, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option);
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv); se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) { if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
EPRINTF("Invalid public exponent."); EPRINTF("Invalid public exponent.");
memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair)); memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false; return false;
} else { } else {
memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek)); memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek));
} }
} }
if (!_test_key_pair(keys->rsa_keypair.public_exponent, keys->rsa_keypair.private_exponent, keys->rsa_keypair.modulus)) { if (!_test_key_pair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) {
EPRINTF("Invalid keypair. Check eticket_rsa_kek."); EPRINTF("Invalid keypair. Check eticket_rsa_kek.");
memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair)); memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false; return false;
} }
se_rsa_key_set(0, keys->rsa_keypair.modulus, sizeof(keys->rsa_keypair.modulus), keys->rsa_keypair.private_exponent, sizeof(keys->rsa_keypair.private_exponent));
const u32 buf_size = SZ_16K; const u32 buf_size = SZ_16K;
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL); _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL);
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->rsa_keypair); _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair);
gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count); gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count);
@ -771,7 +829,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
SAVE_KEY(eticket_rsa_kek_source); SAVE_KEY(eticket_rsa_kek_source);
} }
SAVE_KEY(eticket_rsa_kekek_source); SAVE_KEY(eticket_rsa_kekek_source);
_save_key("eticket_rsa_keypair", &keys->rsa_keypair, sizeof(keys->rsa_keypair), text_buffer); _save_key("eticket_rsa_keypair", &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), text_buffer);
SAVE_KEY(header_kek_source); SAVE_KEY(header_kek_source);
SAVE_KEY_VAR(header_key, keys->header_key); SAVE_KEY_VAR(header_key, keys->header_key);
SAVE_KEY(header_key_source); SAVE_KEY(header_key_source);
@ -800,12 +858,6 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
SAVE_KEY(package2_key_source); SAVE_KEY(package2_key_source);
SAVE_KEY(per_console_key_source); SAVE_KEY(per_console_key_source);
SAVE_KEY(retail_specific_aes_key_source); SAVE_KEY(retail_specific_aes_key_source);
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i];
SAVE_KEY_VAR(rsa_oaep_kek_generation_source, keys->temp_key);
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i];
SAVE_KEY_VAR(rsa_private_kek_generation_source, keys->temp_key);
SAVE_KEY(save_mac_kek_source); SAVE_KEY(save_mac_kek_source);
SAVE_KEY_VAR(save_mac_key, keys->save_mac_key); SAVE_KEY_VAR(save_mac_key, keys->save_mac_key);
SAVE_KEY(save_mac_key_source); SAVE_KEY(save_mac_key_source);
@ -819,9 +871,13 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
SAVE_KEY_VAR(secure_boot_key, keys->sbk); SAVE_KEY_VAR(secure_boot_key, keys->sbk);
SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek); SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek);
SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized); SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized);
SAVE_KEY(ssl_rsa_kek_source_x); if (is_dev) {
SAVE_KEY(ssl_rsa_kek_source_y); SAVE_KEY_VAR(ssl_rsa_kek_source, ssl_rsa_kek_source_dev);
_save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer); } else {
SAVE_KEY(ssl_rsa_kek_source);
}
SAVE_KEY(ssl_rsa_kekek_source);
_save_key("ssl_rsa_keypair", keys->ssl_rsa_keypair, RSA_2048_KEY_SIZE, text_buffer);
SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0); SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0);
SAVE_KEY(titlekek_source); SAVE_KEY(titlekek_source);
SAVE_KEY_VAR(tsec_key, keys->tsec_key); SAVE_KEY_VAR(tsec_key, keys->tsec_key);
@ -1013,7 +1069,7 @@ void derive_amiibo_keys() {
return; return;
} }
_decrypt_aes_key(8, keys->temp_key, nfc_key_source, keys->master_key[0]); _decrypt_aes_key(8, keys, keys->temp_key, nfc_key_source, 0, 0);
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob; nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
static const u8 nfc_iv[AES_128_KEY_SIZE] = { static const u8 nfc_iv[AES_128_KEY_SIZE] = {
@ -1130,30 +1186,60 @@ static void _save_key_family(const char *name, const void *data, u32 start_key,
free(temp_name); free(temp_name);
} }
// Equivalent to spl::GenerateAesKek. When key_seed is set, the result is as if spl::GenerateAesKey was called immediately after. // Equivalent to spl::GenerateAesKek
// The generation and option args are dictated by master_key and kek_seed. static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed) { bool device_unique = GET_IS_DEVICE_UNIQUE(option);
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) u32 seal_key_index = GET_SEAL_KEY_INDEX(option);
return;
se_aes_key_set(ks, master_key, AES_128_KEY_SIZE); if (generation)
se_aes_unwrap_key(ks, ks, kek_seed); generation--;
se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed)) u8 static_source[AES_128_KEY_SIZE];
se_aes_unwrap_key(ks, ks, key_seed); for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
if (device_unique) {
_get_device_key(ks, keys, keys->temp_key, generation);
} else {
memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key));
}
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, static_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source);
}
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
se_aes_key_set(ks, access_key, AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source);
}
// Equivalent to spl::GenerateAesKey
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) {
void *aes_key = keys->temp_key;
_load_aes_key(ks, aes_key, access_key, aes_key_generation_source);
se_aes_key_set(ks, aes_key, AES_128_KEY_SIZE);
se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size);
}
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
_load_aes_key(ks, out_key, access_key, key_source);
} }
// Equivalent to spl::DecryptAesKey. // Equivalent to spl::DecryptAesKey.
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key) { static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) {
_generate_kek(ks, aes_key_decryption_source, master_key, aes_kek_generation_source, aes_key_generation_source); void *access_key = keys->temp_key;
se_aes_crypt_block_ecb(ks, 0, dst, key_source); _generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option);
_generate_aes_key(ks, keys, out_key, AES_128_KEY_SIZE, access_key, key_source);
} }
static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) { // Equivalent to smc::GetSecureData
static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) {
se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE); se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE);
u8 *d = (u8 *)dst; u8 *d = (u8 *)out_data;
se_aes_crypt_ctr(6, d + 0x00, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
se_aes_crypt_ctr(6, d + 0x10, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
// Apply tweak // Apply tweak
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) { for (u32 i = 0; i < AES_128_KEY_SIZE; i++) {
@ -1161,9 +1247,10 @@ static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) {
} }
} }
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation) { // Equivalent to spl::GenerateSpecificAesKey
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) {
if (fuse_read_bootrom_rev() >= 0x7F) { if (fuse_read_bootrom_rev() >= 0x7F) {
_get_device_key(ks, keys, keys->temp_key, key_generation); _get_device_key(ks, keys, keys->temp_key, generation - 1);
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE); se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek)
@ -1172,24 +1259,124 @@ static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void
} }
} }
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision) { static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation) {
if (revision == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) { if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE); memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE);
return; return;
} }
if (revision >= KB_FIRMWARE_VERSION_400) { if (generation >= KB_FIRMWARE_VERSION_400) {
revision -= KB_FIRMWARE_VERSION_400; generation -= KB_FIRMWARE_VERSION_400;
} else { } else {
revision = 0; generation = 0;
} }
u32 temp_key[AES_128_KEY_SIZE / 4] = {0}; u32 temp_key_source[AES_128_KEY_SIZE / 4] = {0};
se_aes_key_set(ks, keys->device_key_4x, AES_128_KEY_SIZE); _load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]);
se_aes_crypt_block_ecb(ks, DECRYPT, temp_key, device_master_key_source_sources[revision]); const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation];
se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE); se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE);
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[revision] : device_master_kek_sources_dev[revision];
se_aes_unwrap_key(ks, ks, kek_source); se_aes_unwrap_key(ks, ks, kek_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key); se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
}
// The following ghash implementation is from Atmosphère's original exosphere implementation
/* Shifts right a little endian 128-bit value. */
static void _shr_128(uint64_t *val) {
val[0] >>= 1;
val[0] |= (val[1] & 1) << 63;
val[1] >>= 1;
}
/* Shifts left a little endian 128-bit value. */
static void _shl_128(uint64_t *val) {
val[1] <<= 1;
val[1] |= (val[0] & (1ull << 63)) >> 63;
val[0] <<= 1;
}
/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */
static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) {
uint8_t x_work[0x10];
uint8_t y_work[0x10];
uint8_t dst_work[0x10];
uint64_t *p_x = (uint64_t *)(&x_work[0]);
uint64_t *p_y = (uint64_t *)(&y_work[0]);
uint64_t *p_dst = (uint64_t *)(&dst_work[0]);
/* Initialize buffers. */
for (unsigned int i = 0; i < 0x10; i++) {
x_work[i] = x[0xF-i];
y_work[i] = y[0xF-i];
dst_work[i] = 0;
}
/* Perform operation for each bit in y. */
for (unsigned int round = 0; round < 0x80; round++) {
p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7);
p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7);
_shl_128(p_y);
uint8_t xval = 0xE1 * (x_work[0] & 1);
_shr_128(p_x);
x_work[0xF] ^= xval;
}
for (unsigned int i = 0; i < 0x10; i++) {
dst[i] = dst_work[0xF-i];
}
}
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) {
uint8_t x[0x10] = {0};
uint8_t h[0x10];
uint64_t *p_x = (uint64_t *)(&x[0]);
uint64_t *p_data = (uint64_t *)src;
/* H = aes_ecb_encrypt(zeroes) */
se_aes_crypt_block_ecb(ks, ENCRYPT, h, x);
u64 total_size = src_size;
while (src_size >= 0x10) {
/* X = (X ^ current_block) * H */
p_x[0] ^= p_data[0];
p_x[1] ^= p_data[1];
_gf128_mul(x, x, h);
/* Increment p_data by 0x10 bytes. */
p_data += 2;
src_size -= 0x10;
}
/* Nintendo's code *discards all data in the last block* if unaligned. */
/* And treats that block as though it were all-zero. */
/* This is a bug, they just forget to XOR with the copy of the last block they save. */
if (src_size & 0xF) {
_gf128_mul(x, x, h);
}
uint64_t xor_size = total_size << 3;
xor_size = __builtin_bswap64(xor_size);
/* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */
if (encrypt) {
p_x[0] ^= xor_size;
} else {
p_x[1] ^= xor_size;
}
_gf128_mul(x, x, h);
/* If final output block, XOR with encrypted J block. */
if (encrypt) {
se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block);
for (unsigned int i = 0; i < 0x10; i++) {
x[i] ^= h[i];
}
}
/* Copy output. */
memcpy(dst, x, 0x10);
} }
static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) { static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) {

View file

@ -24,6 +24,8 @@
#define AES_128_KEY_SIZE 16 #define AES_128_KEY_SIZE 16
#define RSA_2048_KEY_SIZE 256 #define RSA_2048_KEY_SIZE 256
#define RSA_PUBLIC_EXPONENT 65537
// only tickets of type Rsa2048Sha256 are expected // only tickets of type Rsa2048Sha256 are expected
typedef struct { typedef struct {
u32 signature_type; // always 0x10004 u32 signature_type; // always 0x10004
@ -104,6 +106,29 @@ typedef struct {
u8 xor_pad[0x20]; u8 xor_pad[0x20];
} nfc_save_key_t; } nfc_save_key_t;
typedef enum {
SEAL_KEY_LOAD_AES_KEY = 0,
SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA = 1,
SEAL_KEY_IMPORT_LOTUS_KEY = 2,
SEAL_KEY_IMPORT_ES_DEVICE_KEY = 3,
SEAL_KEY_REENCRYPT_DEVICE_UNIQUE_DATA = 4,
SEAL_KEY_IMPORT_SSL_KEY = 5,
SEAL_KEY_IMPORT_ES_CLIENT_CERT_KEY = 6,
} seal_key_t;
typedef enum {
NOT_DEVICE_UNIQUE = 0,
IS_DEVICE_UNIQUE = 1,
} device_unique_t;
#define SET_SEAL_KEY_INDEX(x) (((x) & 7) << 5)
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
#define WRAPPED_RSA_EXT_DATA_SIZE 0x20
#define SSL_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE)
#define SSL_RSA_EXT_KEYPAIR_SIZE (SSL_RSA_KEYPAIR_SIZE + WRAPPED_RSA_EXT_DATA_SIZE)
typedef struct { typedef struct {
u8 temp_key[AES_128_KEY_SIZE], u8 temp_key[AES_128_KEY_SIZE],
bis_key[4][AES_128_KEY_SIZE * 2], bis_key[4][AES_128_KEY_SIZE * 2],
@ -117,8 +142,9 @@ typedef struct {
eticket_rsa_kek[AES_128_KEY_SIZE], eticket_rsa_kek[AES_128_KEY_SIZE],
eticket_rsa_kek_personalized[AES_128_KEY_SIZE], eticket_rsa_kek_personalized[AES_128_KEY_SIZE],
ssl_rsa_kek[AES_128_KEY_SIZE], ssl_rsa_kek[AES_128_KEY_SIZE],
ssl_rsa_kek_legacy[AES_128_KEY_SIZE],
ssl_rsa_kek_personalized[AES_128_KEY_SIZE], ssl_rsa_kek_personalized[AES_128_KEY_SIZE],
ssl_rsa_key[RSA_2048_KEY_SIZE + 0x20], ssl_rsa_keypair[RSA_2048_KEY_SIZE + 0x20],
// keyblob-derived families // keyblob-derived families
keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE], keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE], keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
@ -133,7 +159,7 @@ typedef struct {
tsec_root_key[AES_128_KEY_SIZE]; tsec_root_key[AES_128_KEY_SIZE];
u32 sbk[4]; u32 sbk[4];
keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1]; keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1];
rsa_keypair_t rsa_keypair; rsa_keypair_t eticket_rsa_keypair;
} key_derivation_ctx_t; } key_derivation_ctx_t;
typedef struct { typedef struct {