/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2020 CTCaer # Copyright (c) 2022 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #define USE_RTC_TIMER extern volatile nyx_storage_t *nyx_str; u8 bit_count(u32 val) { u8 cnt = 0; for (u32 i = 0; i < 32; i++) { if ((val >> i) & 1) cnt++; } return cnt; } u32 bit_count_mask(u8 bits) { u32 val = 0; for (u32 i = 0; i < bits; i++) val |= 1 << i; return val; } u32 get_tmr_s() { return RTC(APBDEV_RTC_SECONDS); } u32 get_tmr_ms() { // The registers must be read with the following order: // RTC_MILLI_SECONDS (0x10) -> RTC_SHADOW_SECONDS (0xC) return (RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000)); } u32 get_tmr_us() { return TMR(TIMERUS_CNTR_1US); } void msleep(u32 ms) { #ifdef USE_RTC_TIMER u32 start = RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000); // Casting to u32 is important! while (((u32)(RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000)) - start) <= ms) ; #else bpmp_msleep(ms); #endif } void usleep(u32 us) { #ifdef USE_RTC_TIMER u32 start = TMR(TIMERUS_CNTR_1US); // Check if timer is at upper limits and use BPMP sleep so it doesn't wake up immediately. if ((start + us) < start) bpmp_usleep(us); else while ((u32)(TMR(TIMERUS_CNTR_1US) - start) <= us) // Casting to u32 is important! ; #else bpmp_usleep(us); #endif } void exec_cfg(u32 *base, const cfg_op_t *ops, u32 num_ops) { for(u32 i = 0; i < num_ops; i++) base[ops[i].off] = ops[i].val; } u16 crc16_calc(const u8 *buf, u32 len) { const u8 *p, *q; u16 crc = 0x55aa; static u16 table[16] = { 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400 }; q = buf + len; for (p = buf; p < q; p++) { u8 oct = *p; crc = (crc >> 4) ^ table[crc & 0xf] ^ table[(oct >> 0) & 0xf]; crc = (crc >> 4) ^ table[crc & 0xf] ^ table[(oct >> 4) & 0xf]; } return crc; } u32 crc32_calc(u32 crc, const u8 *buf, u32 len) { const u8 *p, *q; static u32 *table = NULL; // Calculate CRC table. if (!table) { table = calloc(256, sizeof(u32)); for (u32 i = 0; i < 256; i++) { u32 rem = i; for (u32 j = 0; j < 8; j++) { if (rem & 1) { rem >>= 1; rem ^= 0xedb88320; } else rem >>= 1; } table[i] = rem; } } crc = ~crc; q = buf + len; for (p = buf; p < q; p++) { u8 oct = *p; crc = (crc >> 8) ^ table[(crc & 0xff) ^ oct]; } return ~crc; } void panic(u32 val) { // Set panic code. PMC(APBDEV_PMC_SCRATCH200) = val; //PMC(APBDEV_PMC_CRYPTO_OP) = PMC_CRYPTO_OP_SE_DISABLE; TMR(TIMER_WDT4_UNLOCK_PATTERN) = TIMER_MAGIC_PTRN; TMR(TIMER_TMR9_TMR_PTV) = TIMER_EN | TIMER_PER_EN; TMR(TIMER_WDT4_CONFIG) = TIMER_SRC(9) | TIMER_PER(1) | TIMER_PMCRESET_EN; TMR(TIMER_WDT4_COMMAND) = TIMER_START_CNT; while (true) usleep(1); } void power_set_state(power_state_t state) { u8 reg; // Unmount and power down sd card. sd_end(); // De-initialize and power down various hardware. hw_reinit_workaround(false, 0); // Stop the alarm, in case we injected and powered off too fast. max77620_rtc_stop_alarm(); // Set power state. switch (state) { case REBOOT_RCM: PMC(APBDEV_PMC_SCRATCH0) = PMC_SCRATCH0_MODE_RCM; // Enable RCM path. PMC(APBDEV_PMC_CNTRL) |= PMC_CNTRL_MAIN_RST; // PMC reset. break; case REBOOT_BYPASS_FUSES: panic(0x21); // Bypass fuse programming in package1. break; case POWER_OFF: // Initiate power down sequence and do not generate a reset (regulators retain state). i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF); break; case POWER_OFF_RESET: case POWER_OFF_REBOOT: default: // Enable/Disable soft reset wake event. reg = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2); if (state == POWER_OFF_RESET) // Do not wake up after power off. reg &= ~(MAX77620_ONOFFCNFG2_SFT_RST_WK | MAX77620_ONOFFCNFG2_WK_ALARM1 | MAX77620_ONOFFCNFG2_WK_ALARM2); else // POWER_OFF_REBOOT. Wake up after power off. reg |= MAX77620_ONOFFCNFG2_SFT_RST_WK; i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, reg); // Initiate power down sequence and generate a reset (regulators' state resets). i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_SFT_RST); break; } while (true) bpmp_halt(); } void power_set_state_ex(void *param) { power_state_t *state = (power_state_t *)param; power_set_state(*state); } u32 read_le_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 0) ) | (*(u8*)(buffer + offset + 1) << 0x08) | (*(u8*)(buffer + offset + 2) << 0x10) | (*(u8*)(buffer + offset + 3) << 0x18); } u32 read_be_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 3) ) | (*(u8*)(buffer + offset + 2) << 0x08) | (*(u8*)(buffer + offset + 1) << 0x10) | (*(u8*)(buffer + offset + 0) << 0x18); }