using Ryujinx.Common.Logging; using Ryujinx.Graphics.Gpu.Synchronization; using Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostCtrl.Types; using Ryujinx.HLE.HOS.Services.Nv.Types; using Ryujinx.HLE.HOS.Services.Settings; using Ryujinx.Memory; using System; using System.Text; using System.Threading; namespace Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostCtrl { internal class NvHostCtrlDeviceFile : NvDeviceFile { public const int EventsCount = 64; private bool _isProductionMode; private Switch _device; private NvHostEvent[] _events; public NvHostCtrlDeviceFile(ServiceCtx context, IVirtualMemoryManager memory, ulong owner) : base(context, owner) { if (NxSettings.Settings.TryGetValue("nv!rmos_set_production_mode", out object productionModeSetting)) { _isProductionMode = ((string)productionModeSetting) != "0"; // Default value is "" } else { _isProductionMode = true; } _device = context.Device; _events = new NvHostEvent[EventsCount]; } public override NvInternalResult Ioctl(NvIoctl command, Span<byte> arguments) { NvInternalResult result = NvInternalResult.NotImplemented; if (command.Type == NvIoctl.NvHostCustomMagic) { switch (command.Number) { case 0x14: result = CallIoctlMethod<NvFence>(SyncptRead, arguments); break; case 0x15: result = CallIoctlMethod<uint>(SyncptIncr, arguments); break; case 0x16: result = CallIoctlMethod<SyncptWaitArguments>(SyncptWait, arguments); break; case 0x19: result = CallIoctlMethod<SyncptWaitExArguments>(SyncptWaitEx, arguments); break; case 0x1a: result = CallIoctlMethod<NvFence>(SyncptReadMax, arguments); break; case 0x1b: // As Marshal cannot handle unaligned arrays, we do everything by hand here. GetConfigurationArguments configArgument = GetConfigurationArguments.FromSpan(arguments); result = GetConfig(configArgument); if (result == NvInternalResult.Success) { configArgument.CopyTo(arguments); } break; case 0x1c: result = CallIoctlMethod<uint>(EventSignal, arguments); break; case 0x1d: result = CallIoctlMethod<EventWaitArguments>(EventWait, arguments); break; case 0x1e: result = CallIoctlMethod<EventWaitArguments>(EventWaitAsync, arguments); break; case 0x1f: result = CallIoctlMethod<uint>(EventRegister, arguments); break; case 0x20: result = CallIoctlMethod<uint>(EventUnregister, arguments); break; case 0x21: result = CallIoctlMethod<ulong>(EventKill, arguments); break; } } return result; } private int QueryEvent(uint eventId) { lock (_events) { uint eventSlot; uint syncpointId; if ((eventId >> 28) == 1) { eventSlot = eventId & 0xFFFF; syncpointId = (eventId >> 16) & 0xFFF; } else { eventSlot = eventId & 0xFF; syncpointId = eventId >> 4; } if (eventSlot >= EventsCount || _events[eventSlot] == null || _events[eventSlot].Fence.Id != syncpointId) { return 0; } return _events[eventSlot].EventHandle; } } public override NvInternalResult QueryEvent(out int eventHandle, uint eventId) { eventHandle = QueryEvent(eventId); return eventHandle != 0 ? NvInternalResult.Success : NvInternalResult.InvalidInput; } private NvInternalResult SyncptRead(ref NvFence arguments) { return SyncptReadMinOrMax(ref arguments, max: false); } private NvInternalResult SyncptIncr(ref uint id) { if (id >= SynchronizationManager.MaxHardwareSyncpoints) { return NvInternalResult.InvalidInput; } _device.System.HostSyncpoint.Increment(id); return NvInternalResult.Success; } private NvInternalResult SyncptWait(ref SyncptWaitArguments arguments) { uint dummyValue = 0; return EventWait(ref arguments.Fence, ref dummyValue, arguments.Timeout, isWaitEventAsyncCmd: false, isWaitEventCmd: false); } private NvInternalResult SyncptWaitEx(ref SyncptWaitExArguments arguments) { return EventWait(ref arguments.Input.Fence, ref arguments.Value, arguments.Input.Timeout, isWaitEventAsyncCmd: false, isWaitEventCmd: false); } private NvInternalResult SyncptReadMax(ref NvFence arguments) { return SyncptReadMinOrMax(ref arguments, max: true); } private NvInternalResult GetConfig(GetConfigurationArguments arguments) { if (!_isProductionMode && NxSettings.Settings.TryGetValue($"{arguments.Domain}!{arguments.Parameter}".ToLower(), out object nvSetting)) { byte[] settingBuffer = new byte[0x101]; if (nvSetting is string stringValue) { if (stringValue.Length > 0x100) { Logger.Error?.Print(LogClass.ServiceNv, $"{arguments.Domain}!{arguments.Parameter} String value size is too big!"); } else { settingBuffer = Encoding.ASCII.GetBytes(stringValue + "\0"); } } else if (nvSetting is int intValue) { settingBuffer = BitConverter.GetBytes(intValue); } else if (nvSetting is bool boolValue) { settingBuffer[0] = boolValue ? (byte)1 : (byte)0; } else { throw new NotImplementedException(nvSetting.GetType().Name); } Logger.Debug?.Print(LogClass.ServiceNv, $"Got setting {arguments.Domain}!{arguments.Parameter}"); arguments.Configuration = settingBuffer; return NvInternalResult.Success; } // NOTE: This actually return NotAvailableInProduction but this is directly translated as a InvalidInput before returning the ioctl. //return NvInternalResult.NotAvailableInProduction; return NvInternalResult.InvalidInput; } private NvInternalResult EventWait(ref EventWaitArguments arguments) { return EventWait(ref arguments.Fence, ref arguments.Value, arguments.Timeout, isWaitEventAsyncCmd: false, isWaitEventCmd: true); } private NvInternalResult EventWaitAsync(ref EventWaitArguments arguments) { return EventWait(ref arguments.Fence, ref arguments.Value, arguments.Timeout, isWaitEventAsyncCmd: true, isWaitEventCmd: false); } private NvInternalResult EventRegister(ref uint userEventId) { lock (_events) { NvInternalResult result = EventUnregister(ref userEventId); if (result == NvInternalResult.Success) { _events[userEventId] = new NvHostEvent(_device.System.HostSyncpoint, userEventId, _device.System); } return result; } } private NvInternalResult EventUnregister(ref uint userEventId) { lock (_events) { if (userEventId >= EventsCount) { return NvInternalResult.InvalidInput; } NvHostEvent hostEvent = _events[userEventId]; if (hostEvent == null) { return NvInternalResult.Success; } if (hostEvent.State == NvHostEventState.Available || hostEvent.State == NvHostEventState.Cancelled || hostEvent.State == NvHostEventState.Signaled) { _events[userEventId].CloseEvent(Context); _events[userEventId] = null; return NvInternalResult.Success; } return NvInternalResult.Busy; } } private NvInternalResult EventKill(ref ulong eventMask) { lock (_events) { NvInternalResult result = NvInternalResult.Success; for (uint eventId = 0; eventId < EventsCount; eventId++) { if ((eventMask & (1UL << (int)eventId)) != 0) { NvInternalResult tmp = EventUnregister(ref eventId); if (tmp != NvInternalResult.Success) { result = tmp; } } } return result; } } private NvInternalResult EventSignal(ref uint userEventId) { uint eventId = userEventId & ushort.MaxValue; if (eventId >= EventsCount) { return NvInternalResult.InvalidInput; } lock (_events) { NvHostEvent hostEvent = _events[eventId]; if (hostEvent == null) { return NvInternalResult.InvalidInput; } hostEvent.Cancel(_device.Gpu); _device.System.HostSyncpoint.UpdateMin(hostEvent.Fence.Id); return NvInternalResult.Success; } } private NvInternalResult SyncptReadMinOrMax(ref NvFence arguments, bool max) { if (arguments.Id >= SynchronizationManager.MaxHardwareSyncpoints) { return NvInternalResult.InvalidInput; } if (max) { arguments.Value = _device.System.HostSyncpoint.ReadSyncpointMaxValue(arguments.Id); } else { arguments.Value = _device.System.HostSyncpoint.ReadSyncpointValue(arguments.Id); } return NvInternalResult.Success; } private NvInternalResult EventWait(ref NvFence fence, ref uint value, int timeout, bool isWaitEventAsyncCmd, bool isWaitEventCmd) { if (fence.Id >= SynchronizationManager.MaxHardwareSyncpoints) { return NvInternalResult.InvalidInput; } // First try to check if the syncpoint is already expired on the CPU side if (_device.System.HostSyncpoint.IsSyncpointExpired(fence.Id, fence.Value)) { value = _device.System.HostSyncpoint.ReadSyncpointMinValue(fence.Id); return NvInternalResult.Success; } // Try to invalidate the CPU cache and check for expiration again. uint newCachedSyncpointValue = _device.System.HostSyncpoint.UpdateMin(fence.Id); // Has the fence already expired? if (_device.System.HostSyncpoint.IsSyncpointExpired(fence.Id, fence.Value)) { value = newCachedSyncpointValue; return NvInternalResult.Success; } // If the timeout is 0, directly return. if (timeout == 0) { return NvInternalResult.TryAgain; } // The syncpoint value isn't at the fence yet, we need to wait. if (!isWaitEventAsyncCmd) { value = 0; } NvHostEvent hostEvent; NvInternalResult result; uint eventIndex; lock (_events) { if (isWaitEventAsyncCmd) { eventIndex = value; if (eventIndex >= EventsCount) { return NvInternalResult.InvalidInput; } hostEvent = _events[eventIndex]; } else { hostEvent = GetFreeEventLocked(fence.Id, out eventIndex); } if (hostEvent != null) { lock (hostEvent.Lock) { if (hostEvent.State == NvHostEventState.Available || hostEvent.State == NvHostEventState.Signaled || hostEvent.State == NvHostEventState.Cancelled) { bool timedOut = hostEvent.Wait(_device.Gpu, fence); if (timedOut) { if (isWaitEventCmd) { value = ((fence.Id & 0xfff) << 16) | 0x10000000; } else { value = fence.Id << 4; } value |= eventIndex; result = NvInternalResult.TryAgain; } else { value = fence.Value; return NvInternalResult.Success; } } else { Logger.Error?.Print(LogClass.ServiceNv, $"Invalid Event at index {eventIndex} (isWaitEventAsyncCmd: {isWaitEventAsyncCmd}, isWaitEventCmd: {isWaitEventCmd})"); if (hostEvent != null) { Logger.Error?.Print(LogClass.ServiceNv, hostEvent.DumpState(_device.Gpu)); } result = NvInternalResult.InvalidInput; } } } else { Logger.Error?.Print(LogClass.ServiceNv, $"Invalid Event at index {eventIndex} (isWaitEventAsyncCmd: {isWaitEventAsyncCmd}, isWaitEventCmd: {isWaitEventCmd})"); result = NvInternalResult.InvalidInput; } } return result; } private NvHostEvent GetFreeEventLocked(uint id, out uint eventIndex) { eventIndex = EventsCount; uint nullIndex = EventsCount; for (uint index = 0; index < EventsCount; index++) { NvHostEvent Event = _events[index]; if (Event != null) { if (Event.State == NvHostEventState.Available || Event.State == NvHostEventState.Signaled || Event.State == NvHostEventState.Cancelled) { eventIndex = index; if (Event.Fence.Id == id) { return Event; } } } else if (nullIndex == EventsCount) { nullIndex = index; } } if (nullIndex < EventsCount) { eventIndex = nullIndex; EventRegister(ref eventIndex); return _events[nullIndex]; } if (eventIndex < EventsCount) { return _events[eventIndex]; } return null; } public override void Close() { Logger.Warning?.Print(LogClass.ServiceNv, "Closing channel"); lock (_events) { // If the device file need to be closed, cancel all user events and dispose events. for (int i = 0; i < _events.Length; i++) { NvHostEvent evnt = _events[i]; if (evnt != null) { lock (evnt.Lock) { if (evnt.State == NvHostEventState.Waiting) { evnt.State = NvHostEventState.Cancelling; evnt.Cancel(_device.Gpu); } else if (evnt.State == NvHostEventState.Signaling) { // Wait at max 9ms if the guest app is trying to signal the event while closing it.. int retryCount = 0; do { if (retryCount++ > 9) { break; } // TODO: This should be handled by the kernel (reschedule the current thread ect), waiting for Kernel decoupling work. Thread.Sleep(1); } while (evnt.State != NvHostEventState.Signaled); } evnt.CloseEvent(Context); _events[i] = null; } } } } } } }