using Ryujinx.Cpu; using Ryujinx.Cpu.Tracking; using Ryujinx.Graphics.Gpu.Image; using Ryujinx.Graphics.Gpu.Shader; using Ryujinx.Memory; using Ryujinx.Memory.Range; using Ryujinx.Memory.Tracking; using System; using System.Collections.Generic; using System.Threading; namespace Ryujinx.Graphics.Gpu.Memory { /// <summary> /// Represents physical memory, accessible from the GPU. /// This is actually working CPU virtual addresses, of memory mapped on the application process. /// </summary> class PhysicalMemory : IDisposable { private readonly GpuContext _context; private IVirtualMemoryManagerTracked _cpuMemory; private int _referenceCount; /// <summary> /// In-memory shader cache. /// </summary> public ShaderCache ShaderCache { get; } /// <summary> /// GPU buffer manager. /// </summary> public BufferCache BufferCache { get; } /// <summary> /// GPU texture manager. /// </summary> public TextureCache TextureCache { get; } /// <summary> /// Creates a new instance of the physical memory. /// </summary> /// <param name="context">GPU context that the physical memory belongs to</param> /// <param name="cpuMemory">CPU memory manager of the application process</param> public PhysicalMemory(GpuContext context, IVirtualMemoryManagerTracked cpuMemory) { _context = context; _cpuMemory = cpuMemory; ShaderCache = new ShaderCache(context); BufferCache = new BufferCache(context, this); TextureCache = new TextureCache(context, this); if (cpuMemory is IRefCounted rc) { rc.IncrementReferenceCount(); } _referenceCount = 1; } /// <summary> /// Increments the memory reference count. /// </summary> public void IncrementReferenceCount() { Interlocked.Increment(ref _referenceCount); } /// <summary> /// Decrements the memory reference count. /// </summary> public void DecrementReferenceCount() { if (Interlocked.Decrement(ref _referenceCount) == 0 && _cpuMemory is IRefCounted rc) { rc.DecrementReferenceCount(); } } /// <summary> /// Gets a span of data from the application process. /// </summary> /// <param name="address">Start address of the range</param> /// <param name="size">Size in bytes to be range</param> /// <param name="tracked">True if read tracking is triggered on the span</param> /// <returns>A read only span of the data at the specified memory location</returns> public ReadOnlySpan<byte> GetSpan(ulong address, int size, bool tracked = false) { return _cpuMemory.GetSpan(address, size, tracked); } /// <summary> /// Gets a span of data from the application process. /// </summary> /// <param name="range">Ranges of physical memory where the data is located</param> /// <param name="tracked">True if read tracking is triggered on the span</param> /// <returns>A read only span of the data at the specified memory location</returns> public ReadOnlySpan<byte> GetSpan(MultiRange range, bool tracked = false) { if (range.Count == 1) { var singleRange = range.GetSubRange(0); if (singleRange.Address != MemoryManager.PteUnmapped) { return _cpuMemory.GetSpan(singleRange.Address, (int)singleRange.Size, tracked); } } Span<byte> data = new byte[range.GetSize()]; int offset = 0; for (int i = 0; i < range.Count; i++) { var currentRange = range.GetSubRange(i); int size = (int)currentRange.Size; if (currentRange.Address != MemoryManager.PteUnmapped) { _cpuMemory.GetSpan(currentRange.Address, size, tracked).CopyTo(data.Slice(offset, size)); } offset += size; } return data; } /// <summary> /// Gets a writable region from the application process. /// </summary> /// <param name="address">Start address of the range</param> /// <param name="size">Size in bytes to be range</param> /// <param name="tracked">True if write tracking is triggered on the span</param> /// <returns>A writable region with the data at the specified memory location</returns> public WritableRegion GetWritableRegion(ulong address, int size, bool tracked = false) { return _cpuMemory.GetWritableRegion(address, size, tracked); } /// <summary> /// Gets a writable region from GPU mapped memory. /// </summary> /// <param name="range">Range</param> /// <param name="tracked">True if write tracking is triggered on the span</param> /// <returns>A writable region with the data at the specified memory location</returns> public WritableRegion GetWritableRegion(MultiRange range, bool tracked = false) { if (range.Count == 1) { MemoryRange subrange = range.GetSubRange(0); return GetWritableRegion(subrange.Address, (int)subrange.Size, tracked); } else { Memory<byte> memory = new byte[range.GetSize()]; int offset = 0; for (int i = 0; i < range.Count; i++) { var currentRange = range.GetSubRange(i); int size = (int)currentRange.Size; if (currentRange.Address != MemoryManager.PteUnmapped) { GetSpan(currentRange.Address, size).CopyTo(memory.Span.Slice(offset, size)); } offset += size; } return new WritableRegion(new MultiRangeWritableBlock(range, this), 0, memory, tracked); } } /// <summary> /// Reads data from the application process. /// </summary> /// <typeparam name="T">Type of the structure</typeparam> /// <param name="address">Address to read from</param> /// <returns>The data at the specified memory location</returns> public T Read<T>(ulong address) where T : unmanaged { return _cpuMemory.Read<T>(address); } /// <summary> /// Reads data from the application process, with write tracking. /// </summary> /// <typeparam name="T">Type of the structure</typeparam> /// <param name="address">Address to read from</param> /// <returns>The data at the specified memory location</returns> public T ReadTracked<T>(ulong address) where T : unmanaged { return _cpuMemory.ReadTracked<T>(address); } /// <summary> /// Writes data to the application process, triggering a precise memory tracking event. /// </summary> /// <param name="address">Address to write into</param> /// <param name="data">Data to be written</param> public void WriteTrackedResource(ulong address, ReadOnlySpan<byte> data) { _cpuMemory.SignalMemoryTracking(address, (ulong)data.Length, true, precise: true); _cpuMemory.WriteUntracked(address, data); } /// <summary> /// Writes data to the application process. /// </summary> /// <param name="address">Address to write into</param> /// <param name="data">Data to be written</param> public void Write(ulong address, ReadOnlySpan<byte> data) { _cpuMemory.Write(address, data); } /// <summary> /// Writes data to the application process. /// </summary> /// <param name="range">Ranges of physical memory where the data is located</param> /// <param name="data">Data to be written</param> public void Write(MultiRange range, ReadOnlySpan<byte> data) { WriteImpl(range, data, _cpuMemory.Write); } /// <summary> /// Writes data to the application process, without any tracking. /// </summary> /// <param name="address">Address to write into</param> /// <param name="data">Data to be written</param> public void WriteUntracked(ulong address, ReadOnlySpan<byte> data) { _cpuMemory.WriteUntracked(address, data); } /// <summary> /// Writes data to the application process, without any tracking. /// </summary> /// <param name="range">Ranges of physical memory where the data is located</param> /// <param name="data">Data to be written</param> public void WriteUntracked(MultiRange range, ReadOnlySpan<byte> data) { WriteImpl(range, data, _cpuMemory.WriteUntracked); } private delegate void WriteCallback(ulong address, ReadOnlySpan<byte> data); /// <summary> /// Writes data to the application process, using the supplied callback method. /// </summary> /// <param name="range">Ranges of physical memory where the data is located</param> /// <param name="data">Data to be written</param> /// <param name="writeCallback">Callback method that will perform the write</param> private static void WriteImpl(MultiRange range, ReadOnlySpan<byte> data, WriteCallback writeCallback) { if (range.Count == 1) { var singleRange = range.GetSubRange(0); if (singleRange.Address != MemoryManager.PteUnmapped) { writeCallback(singleRange.Address, data); } } else { int offset = 0; for (int i = 0; i < range.Count; i++) { var currentRange = range.GetSubRange(i); int size = (int)currentRange.Size; if (currentRange.Address != MemoryManager.PteUnmapped) { writeCallback(currentRange.Address, data.Slice(offset, size)); } offset += size; } } } /// <summary> /// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <returns>The memory tracking handle</returns> public CpuRegionHandle BeginTracking(ulong address, ulong size) { return _cpuMemory.BeginTracking(address, size); } /// <summary> /// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with. /// </summary> /// <param name="range">Ranges of physical memory where the data is located</param> /// <returns>The memory tracking handle</returns> public GpuRegionHandle BeginTracking(MultiRange range) { var cpuRegionHandles = new CpuRegionHandle[range.Count]; int count = 0; for (int i = 0; i < range.Count; i++) { var currentRange = range.GetSubRange(i); if (currentRange.Address != MemoryManager.PteUnmapped) { cpuRegionHandles[count++] = _cpuMemory.BeginTracking(currentRange.Address, currentRange.Size); } } if (count != range.Count) { Array.Resize(ref cpuRegionHandles, count); } return new GpuRegionHandle(cpuRegionHandles); } /// <summary> /// Obtains a memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <param name="handles">Handles to inherit state from or reuse</param> /// <param name="granularity">Desired granularity of write tracking</param> /// <returns>The memory tracking handle</returns> public CpuMultiRegionHandle BeginGranularTracking(ulong address, ulong size, IEnumerable<IRegionHandle> handles = null, ulong granularity = 4096) { return _cpuMemory.BeginGranularTracking(address, size, handles, granularity); } /// <summary> /// Obtains a smart memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <param name="granularity">Desired granularity of write tracking</param> /// <returns>The memory tracking handle</returns> public CpuSmartMultiRegionHandle BeginSmartGranularTracking(ulong address, ulong size, ulong granularity = 4096) { return _cpuMemory.BeginSmartGranularTracking(address, size, granularity); } /// <summary> /// Checks if a given memory page is mapped. /// </summary> /// <param name="address">CPU virtual address of the page</param> /// <returns>True if mapped, false otherwise</returns> public bool IsMapped(ulong address) { return _cpuMemory.IsMapped(address); } /// <summary> /// Release our reference to the CPU memory manager. /// </summary> public void Dispose() { _context.DeferredActions.Enqueue(Destroy); } /// <summary> /// Performs disposal of the host GPU caches with resources mapped on this physical memory. /// This must only be called from the render thread. /// </summary> private void Destroy() { ShaderCache.Dispose(); BufferCache.Dispose(); TextureCache.Dispose(); DecrementReferenceCount(); } } }