using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System;
using static ARMeilleure.Instructions.InstEmitFlowHelper;
using static ARMeilleure.Instructions.InstEmitHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper32;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;

namespace ARMeilleure.Instructions
{
    static partial class InstEmit32
    {
        public static void Vabd_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitVectorBinaryOpI32(context, (op1, op2) => EmitAbs(context, context.Subtract(op1, op2)), !op.U);
        }

        public static void Vabdl_I(ArmEmitterContext context)
        {
            OpCode32SimdRegLong op = (OpCode32SimdRegLong)context.CurrOp;

            EmitVectorBinaryLongOpI32(context, (op1, op2) => EmitAbs(context, context.Subtract(op1, op2)), !op.U);
        }

        public static void Vabs_S(ArmEmitterContext context)
        {
            OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;

            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarUnaryOpSimd32(context, (m) =>
                {
                    return EmitFloatAbs(context, m, (op.Size & 1) == 0, false);
                });
            }
            else
            {
                EmitScalarUnaryOpF32(context, (op1) => EmitUnaryMathCall(context, nameof(Math.Abs), op1));
            }
        }

        public static void Vabs_V(ArmEmitterContext context)
        {
            OpCode32SimdCmpZ op = (OpCode32SimdCmpZ)context.CurrOp;

            if (op.F)
            {
                if (Optimizations.FastFP && Optimizations.UseSse2)
                {
                    EmitVectorUnaryOpSimd32(context, (m) =>
                    {
                        return EmitFloatAbs(context, m, (op.Size & 1) == 0, true);
                    });
                }
                else
                {
                    EmitVectorUnaryOpF32(context, (op1) => EmitUnaryMathCall(context, nameof(Math.Abs), op1));
                }
            }
            else
            {
                EmitVectorUnaryOpSx32(context, (op1) => EmitAbs(context, op1));
            }
        }

        private static Operand EmitAbs(ArmEmitterContext context, Operand value)
        {
            Operand isPositive = context.ICompareGreaterOrEqual(value, Const(value.Type, 0));

            return context.ConditionalSelect(isPositive, value, context.Negate(value));
        }

        public static void Vadd_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarBinaryOpF32(context, Intrinsic.X86Addss, Intrinsic.X86Addsd);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => context.Add(op1, op2));
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, nameof(SoftFloat32.FPAdd), op1, op2));
            }
        }

        public static void Vadd_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorBinaryOpF32(context, Intrinsic.X86Addps, Intrinsic.X86Addpd);
            }
            else if (Optimizations.FastFP)
            {
                EmitVectorBinaryOpF32(context, (op1, op2) => context.Add(op1, op2));
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPAddFpscr), op1, op2));
            }
        }

        public static void Vadd_I(ArmEmitterContext context)
        {
            if (Optimizations.UseSse2)
            {
                OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
                EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PaddInstruction[op.Size], op1, op2));
            }
            else
            {
                EmitVectorBinaryOpZx32(context, (op1, op2) => context.Add(op1, op2));
            }
        }

        public static void Vaddl_I(ArmEmitterContext context)
        {
            OpCode32SimdRegLong op = (OpCode32SimdRegLong)context.CurrOp;

            EmitVectorBinaryLongOpI32(context, (op1, op2) => context.Add(op1, op2), !op.U);
        }

        public static void Vaddw_I(ArmEmitterContext context)
        {
            OpCode32SimdRegWide op = (OpCode32SimdRegWide)context.CurrOp;

            EmitVectorBinaryWideOpI32(context, (op1, op2) => context.Add(op1, op2), !op.U);
        }

        public static void Vcnt(ArmEmitterContext context)
        {
            OpCode32SimdCmpZ op = (OpCode32SimdCmpZ)context.CurrOp;

            Operand res = GetVecA32(op.Qd);

            int elems = op.GetBytesCount();

            for (int index = 0; index < elems; index++)
            {
                Operand de;
                Operand me = EmitVectorExtractZx32(context, op.Qm, op.Im + index, op.Size);

                if (Optimizations.UsePopCnt)
                {
                    de = context.AddIntrinsicInt(Intrinsic.X86Popcnt, me);
                }
                else
                {
                    de = EmitCountSetBits8(context, me);
                }

                res = EmitVectorInsert(context, res, de, op.Id + index, op.Size);
            }

            context.Copy(GetVecA32(op.Qd), res);
        }

        public static void Vdup(ArmEmitterContext context)
        {
            OpCode32SimdDupGP op = (OpCode32SimdDupGP)context.CurrOp;

            Operand insert = GetIntA32(context, op.Rt);

            // Zero extend into an I64, then replicate. Saves the most time over elementwise inserts.
            insert = op.Size switch
            {
                2 => context.Multiply(context.ZeroExtend32(OperandType.I64, insert), Const(0x0000000100000001u)),
                1 => context.Multiply(context.ZeroExtend16(OperandType.I64, insert), Const(0x0001000100010001u)),
                0 => context.Multiply(context.ZeroExtend8(OperandType.I64, insert), Const(0x0101010101010101u)),
                _ => throw new InvalidOperationException($"Invalid Vdup size \"{op.Size}\".")
            };

            InsertScalar(context, op.Vd, insert);
            if (op.Q)
            {
                InsertScalar(context, op.Vd + 1, insert);
            }
        }

        public static void Vdup_1(ArmEmitterContext context)
        {
            OpCode32SimdDupElem op = (OpCode32SimdDupElem)context.CurrOp;

            Operand insert = EmitVectorExtractZx32(context, op.Vm >> 1, ((op.Vm & 1) << (3 - op.Size)) + op.Index, op.Size);

            // Zero extend into an I64, then replicate. Saves the most time over elementwise inserts.
            insert = op.Size switch
            {
                2 => context.Multiply(context.ZeroExtend32(OperandType.I64, insert), Const(0x0000000100000001u)),
                1 => context.Multiply(context.ZeroExtend16(OperandType.I64, insert), Const(0x0001000100010001u)),
                0 => context.Multiply(context.ZeroExtend8(OperandType.I64, insert), Const(0x0101010101010101u)),
                _ => throw new InvalidOperationException($"Invalid Vdup size \"{op.Size}\".")
            };

            InsertScalar(context, op.Vd, insert);
            if (op.Q)
            {
                InsertScalar(context, op.Vd | 1, insert);
            }
        }

        private static (long, long) MaskHelperByteSequence(int start, int length, int startByte)
        {
            int end = start + length;
            int b = startByte;
            long result = 0;
            long result2 = 0;
            for (int i = 0; i < 8; i++)
            {
                result |= (long)((i >= end || i < start) ? 0x80 : b++) << (i * 8);
            }
            for (int i = 8; i < 16; i++)
            {
                result2 |= (long)((i >= end || i < start) ? 0x80 : b++) << ((i - 8) * 8);
            }
            return (result2, result);
        }

        public static void Vext(ArmEmitterContext context)
        {
            OpCode32SimdExt op = (OpCode32SimdExt)context.CurrOp;
            int elems = op.GetBytesCount();
            int byteOff = op.Immediate;

            if (Optimizations.UseSsse3)
            {
                EmitVectorBinaryOpSimd32(context, (n, m) =>
                {
                    // Writing low to high of d: start <imm> into n, overlap into m.
                    // Then rotate n down by <imm>, m up by (elems)-imm.
                    // Then OR them together for the result.

                    (long nMaskHigh, long nMaskLow) = MaskHelperByteSequence(0, elems - byteOff, byteOff);
                    (long mMaskHigh, long mMaskLow) = MaskHelperByteSequence(elems - byteOff, byteOff, 0);
                    Operand nMask, mMask;
                    if (!op.Q)
                    {
                        // Do the same operation to the bytes in the top doubleword too, as our target could be in either.
                        nMaskHigh = nMaskLow + 0x0808080808080808L;
                        mMaskHigh = mMaskLow + 0x0808080808080808L;
                    }
                    nMask = X86GetElements(context, nMaskHigh, nMaskLow);
                    mMask = X86GetElements(context, mMaskHigh, mMaskLow);
                    Operand nPart = context.AddIntrinsic(Intrinsic.X86Pshufb, n, nMask);
                    Operand mPart = context.AddIntrinsic(Intrinsic.X86Pshufb, m, mMask);

                    return context.AddIntrinsic(Intrinsic.X86Por, nPart, mPart);
                });
            }
            else
            {
                Operand res = GetVecA32(op.Qd);

                for (int index = 0; index < elems; index++)
                {
                    Operand extract;

                    if (byteOff >= elems)
                    {
                        extract = EmitVectorExtractZx32(context, op.Qm, op.Im + (byteOff - elems), op.Size);
                    }
                    else
                    {
                        extract = EmitVectorExtractZx32(context, op.Qn, op.In + byteOff, op.Size);
                    }
                    byteOff++;

                    res = EmitVectorInsert(context, res, extract, op.Id + index, op.Size);
                }

                context.Copy(GetVecA32(op.Qd), res);
            }
        }

        public static void Vfma_S(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Vfmadd231ss, Intrinsic.X86Vfmadd231sd);
            }
            else if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Addss, Intrinsic.X86Addsd);
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPMulAdd), op1, op2, op3);
                });
            }
        }

        public static void Vfma_V(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitVectorTernaryOpF32(context, Intrinsic.X86Vfmadd231ps);
            }
            else
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulAddFpscr), op1, op2, op3);
                });
            }
        }

        public static void Vfms_S(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Vfnmadd231ss, Intrinsic.X86Vfnmadd231sd);
            }
            else if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Subss, Intrinsic.X86Subsd);
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPMulSub), op1, op2, op3);
                });
            }
        }

        public static void Vfms_V(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitVectorTernaryOpF32(context, Intrinsic.X86Vfnmadd231ps);
            }
            else
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulSubFpscr), op1, op2, op3);
                });
            }
        }

        public static void Vfnma_S(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Vfnmsub231ss, Intrinsic.X86Vfnmsub231sd);
            }
            else if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Subss, Intrinsic.X86Subsd, isNegD: true);
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPNegMulAdd), op1, op2, op3);
                });
            }
        }

        public static void Vfnms_S(ArmEmitterContext context) // Fused.
        {
            if (Optimizations.FastFP && Optimizations.UseFma)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Vfmsub231ss, Intrinsic.X86Vfmsub231sd);
            }
            else if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Addss, Intrinsic.X86Addsd, isNegD: true);
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPNegMulSub), op1, op2, op3);
                });
            }
        }

        public static void Vhadd(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (op.U)
            {
                EmitVectorBinaryOpZx32(context, (op1, op2) => context.ShiftRightUI(context.Add(op1, op2), Const(1)));
            }
            else
            {
                EmitVectorBinaryOpSx32(context, (op1, op2) => context.ShiftRightSI(context.Add(op1, op2), Const(1)));
            }
        }

        public static void Vmov_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarUnaryOpF32(context, 0, 0);
            }
            else
            {
                EmitScalarUnaryOpF32(context, (op1) => op1);
            }
        }

        public static void Vmovn(ArmEmitterContext context)
        {
            EmitVectorUnaryNarrowOp32(context, (op1) => op1);
        }

        public static void Vneg_S(ArmEmitterContext context)
        {
            OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;

            if (Optimizations.UseSse2)
            {
                EmitScalarUnaryOpSimd32(context, (m) =>
                {
                    if ((op.Size & 1) == 0)
                    {
                        Operand mask = X86GetScalar(context, -0f);
                        return context.AddIntrinsic(Intrinsic.X86Xorps, mask, m);
                    }
                    else
                    {
                        Operand mask = X86GetScalar(context, -0d);
                        return context.AddIntrinsic(Intrinsic.X86Xorpd, mask, m);
                    }
                });
            }
            else
            {
                EmitScalarUnaryOpF32(context, (op1) => context.Negate(op1));
            }
        }

        public static void Vnmul_S(ArmEmitterContext context)
        {
            OpCode32SimdRegS op = (OpCode32SimdRegS)context.CurrOp;

            if (Optimizations.UseSse2)
            {
                EmitScalarBinaryOpSimd32(context, (n, m) =>
                {
                    if ((op.Size & 1) == 0)
                    {
                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulss, n, m);
                        Operand mask = X86GetScalar(context, -0f);
                        return context.AddIntrinsic(Intrinsic.X86Xorps, mask, res);
                    }
                    else
                    {
                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulsd, n, m);
                        Operand mask = X86GetScalar(context, -0d);
                        return context.AddIntrinsic(Intrinsic.X86Xorpd, mask, res);
                    }
                });
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => context.Negate(context.Multiply(op1, op2)));
            }
        }

        public static void Vnmla_S(ArmEmitterContext context)
        {
            OpCode32SimdRegS op = (OpCode32SimdRegS)context.CurrOp;

            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Subss, Intrinsic.X86Subsd, isNegD: true);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return context.Subtract(context.Negate(op1), context.Multiply(op2, op3));
                });
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    Operand res = EmitSoftFloatCall(context, nameof(SoftFloat32.FPMul), op2, op3);
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPSub), context.Negate(op1), res);
                });
            }
        }

        public static void Vnmls_S(ArmEmitterContext context)
        {
            OpCode32SimdRegS op = (OpCode32SimdRegS)context.CurrOp;

            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Addss, Intrinsic.X86Addsd, isNegD: true);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return context.Add(context.Negate(op1), context.Multiply(op2, op3));
                });
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    Operand res = EmitSoftFloatCall(context, nameof(SoftFloat32.FPMul), op2, op3);
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPAdd), context.Negate(op1), res);
                });
            }
        }

        public static void Vneg_V(ArmEmitterContext context)
        {
            OpCode32SimdCmpZ op = (OpCode32SimdCmpZ)context.CurrOp;

            if (op.F)
            {
                if (Optimizations.FastFP && Optimizations.UseSse2)
                {
                    EmitVectorUnaryOpSimd32(context, (m) =>
                    {
                        if ((op.Size & 1) == 0)
                        {
                            Operand mask = X86GetAllElements(context, -0f);
                            return context.AddIntrinsic(Intrinsic.X86Xorps, mask, m);
                        }
                        else
                        {
                            Operand mask = X86GetAllElements(context, -0d);
                            return context.AddIntrinsic(Intrinsic.X86Xorpd, mask, m);
                        }
                    });
                }
                else
                {
                    EmitVectorUnaryOpF32(context, (op1) => context.Negate(op1));
                }
            }
            else
            {
                EmitVectorUnaryOpSx32(context, (op1) => context.Negate(op1));
            }
        }

        public static void Vdiv_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarBinaryOpF32(context, Intrinsic.X86Divss, Intrinsic.X86Divsd);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => context.Divide(op1, op2));
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPDiv), op1, op2);
                });
            }
        }

        public static void Vmaxnm_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse41)
            {
                EmitSse41MaxMinNumOpF32(context, true, true);
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, nameof(SoftFloat32.FPMaxNum), op1, op2));
            }
        }

        public static void Vmaxnm_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse41)
            {
                EmitSse41MaxMinNumOpF32(context, true, false);
            }
            else
            {
                EmitVectorBinaryOpSx32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMaxNumFpscr), op1, op2));
            }
        }

        public static void Vminnm_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse41)
            {
                EmitSse41MaxMinNumOpF32(context, false, true);
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, nameof(SoftFloat32.FPMinNum), op1, op2));
            }
        }

        public static void Vminnm_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse41)
            {
                EmitSse41MaxMinNumOpF32(context, false, false);
            }
            else
            {
                EmitVectorBinaryOpSx32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMinNumFpscr), op1, op2));
            }
        }

        public static void Vmax_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorBinaryOpF32(context, Intrinsic.X86Maxps, Intrinsic.X86Maxpd);
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMaxFpscr), op1, op2);
                });
            }
        }

        public static void Vmax_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (op.U)
            {
                if (Optimizations.UseSse2)
                {
                    EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PmaxuInstruction[op.Size], op1, op2));
                }
                else
                {
                    EmitVectorBinaryOpZx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareGreaterUI(op1, op2), op1, op2));
                }
            }
            else
            {
                if (Optimizations.UseSse2)
                {
                    EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PmaxsInstruction[op.Size], op1, op2));
                }
                else
                {
                    EmitVectorBinaryOpSx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareGreater(op1, op2), op1, op2));
                }
            }
        }

        public static void Vmin_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorBinaryOpF32(context, Intrinsic.X86Minps, Intrinsic.X86Minpd);
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMinFpscr), op1, op2);
                });
            }
        }

        public static void Vmin_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (op.U)
            {
                if (Optimizations.UseSse2)
                {
                    EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PminuInstruction[op.Size], op1, op2));
                }
                else
                {
                    EmitVectorBinaryOpZx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareLessUI(op1, op2), op1, op2));
                }
            }
            else
            {
                if (Optimizations.UseSse2)
                {
                    EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PminsInstruction[op.Size], op1, op2));
                }
                else
                {
                    EmitVectorBinaryOpSx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareLess(op1, op2), op1, op2));
                }
            }
        }

        public static void Vmla_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Addss, Intrinsic.X86Addsd);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return context.Add(op1, context.Multiply(op2, op3));
                });
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    Operand res = EmitSoftFloatCall(context, nameof(SoftFloat32.FPMul), op2, op3);
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPAdd), op1, res);
                });
            }
        }

        public static void Vmla_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorTernaryOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd, Intrinsic.X86Addps, Intrinsic.X86Addpd);
            }
            else if (Optimizations.FastFP)
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3)));
            }
            else
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulAddFpscr), op1, op2, op3);
                });
            }
        }

        public static void Vmla_I(ArmEmitterContext context)
        {
            EmitVectorTernaryOpZx32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3)));
        }

        public static void Vmla_1(ArmEmitterContext context)
        {
            OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp;

            if (op.F)
            {
                if (Optimizations.FastFP && Optimizations.UseSse2)
                {
                    EmitVectorsByScalarOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd, Intrinsic.X86Addps, Intrinsic.X86Addpd);
                }
                else if (Optimizations.FastFP)
                {
                    EmitVectorsByScalarOpF32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3)));
                }
                else
                {
                    EmitVectorsByScalarOpF32(context, (op1, op2, op3) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulAddFpscr), op1, op2, op3));
                }
            }
            else
            {
                EmitVectorsByScalarOpI32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3)), false);
            }
        }

        public static void Vmlal_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitVectorTernaryLongOpI32(context, (d, n, m) => context.Add(d, context.Multiply(n, m)), !op.U);
        }

        public static void Vmls_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarTernaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd, Intrinsic.X86Subss, Intrinsic.X86Subsd);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return context.Subtract(op1, context.Multiply(op2, op3));
                });
            }
            else
            {
                EmitScalarTernaryOpF32(context, (op1, op2, op3) =>
                {
                    Operand res = EmitSoftFloatCall(context, nameof(SoftFloat32.FPMul), op2, op3);
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPSub), op1, res);
                });
            }
        }

        public static void Vmls_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorTernaryOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd, Intrinsic.X86Subps, Intrinsic.X86Subpd);
            }
            else if (Optimizations.FastFP)
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3)));
            }
            else
            {
                EmitVectorTernaryOpF32(context, (op1, op2, op3) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulSubFpscr), op1, op2, op3);
                });
            }
        }

        public static void Vmls_I(ArmEmitterContext context)
        {
            EmitVectorTernaryOpZx32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3)));
        }

        public static void Vmls_1(ArmEmitterContext context)
        {
            OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp;

            if (op.F)
            {
                if (Optimizations.FastFP && Optimizations.UseSse2)
                {
                    EmitVectorsByScalarOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd, Intrinsic.X86Subps, Intrinsic.X86Subpd);
                }
                else if (Optimizations.FastFP)
                {
                    EmitVectorsByScalarOpF32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3)));
                }
                else
                {
                    EmitVectorsByScalarOpF32(context, (op1, op2, op3) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulSubFpscr), op1, op2, op3));
                }
            }
            else
            {
                EmitVectorsByScalarOpI32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3)), false);
            }
        }

        public static void Vmlsl_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitVectorTernaryLongOpI32(context, (opD, op1, op2) => context.Subtract(opD, context.Multiply(op1, op2)), !op.U);
        }

        public static void Vmul_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarBinaryOpF32(context, Intrinsic.X86Mulss, Intrinsic.X86Mulsd);
            }
            else if (Optimizations.FastFP)
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => context.Multiply(op1, op2));
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPMul), op1, op2);
                });
            }
        }

        public static void Vmul_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorBinaryOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd);
            }
            else if (Optimizations.FastFP)
            {
                EmitVectorBinaryOpF32(context, (op1, op2) => context.Multiply(op1, op2));
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulFpscr), op1, op2);
                });
            }
        }

        public static void Vmul_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (op.U) // This instruction is always signed, U indicates polynomial mode.
            {
                EmitVectorBinaryOpZx32(context, (op1, op2) => EmitPolynomialMultiply(context, op1, op2, 8 << op.Size));
            }
            else
            {
                EmitVectorBinaryOpSx32(context, (op1, op2) => context.Multiply(op1, op2));
            }
        }

        public static void Vmul_1(ArmEmitterContext context)
        {
            OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp;

            if (op.F)
            {
                if (Optimizations.FastFP && Optimizations.UseSse2)
                {
                    EmitVectorByScalarOpF32(context, Intrinsic.X86Mulps, Intrinsic.X86Mulpd);
                }
                else if (Optimizations.FastFP)
                {
                    EmitVectorByScalarOpF32(context, (op1, op2) => context.Multiply(op1, op2));
                }
                else
                {
                    EmitVectorByScalarOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMulFpscr), op1, op2));
                }
            }
            else
            {
                EmitVectorByScalarOpI32(context, (op1, op2) => context.Multiply(op1, op2), false);
            }
        }

        public static void Vmull_1(ArmEmitterContext context)
        {
            OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp;

            EmitVectorByScalarLongOpI32(context, (op1, op2) => context.Multiply(op1, op2), !op.U);
        }

        public static void Vmull_I(ArmEmitterContext context)
        {
            OpCode32SimdRegLong op = (OpCode32SimdRegLong)context.CurrOp;

            if (op.Polynomial)
            {
                if (op.Size == 0) // P8
                {
                    EmitVectorBinaryLongOpI32(context, (op1, op2) => EmitPolynomialMultiply(context, op1, op2, 8 << op.Size), false);
                }
                else /* if (op.Size == 2) // P64 */
                {
                    Operand ne = context.VectorExtract(OperandType.I64, GetVec(op.Qn), op.Vn & 1);
                    Operand me = context.VectorExtract(OperandType.I64, GetVec(op.Qm), op.Vm & 1);

                    Operand res = context.Call(typeof(SoftFallback).GetMethod(nameof(SoftFallback.PolynomialMult64_128)), ne, me);

                    context.Copy(GetVecA32(op.Qd), res);
                }
            }
            else
            {
                EmitVectorBinaryLongOpI32(context, (op1, op2) => context.Multiply(op1, op2), !op.U);
            }
        }

        public static void Vpadd_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitSse2VectorPairwiseOpF32(context, Intrinsic.X86Addps);
            }
            else
            {
                EmitVectorPairwiseOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPAddFpscr), op1, op2));
            }
        }

        public static void Vpadd_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (Optimizations.UseSsse3)
            {
                EmitSsse3VectorPairwiseOp32(context, X86PaddInstruction);
            }
            else
            {
                EmitVectorPairwiseOpI32(context, (op1, op2) => context.Add(op1, op2), !op.U);
            }
        }

        public static void Vpaddl(ArmEmitterContext context)
        {
            OpCode32Simd op = (OpCode32Simd)context.CurrOp;

            EmitVectorPairwiseLongOpI32(context, (op1, op2) => context.Add(op1, op2), (op.Opc & 1) == 0);
        }

        public static void Vpmax_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitSse2VectorPairwiseOpF32(context, Intrinsic.X86Maxps);
            }
            else
            {
                EmitVectorPairwiseOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat64.FPMaxFpscr), op1, op2));
            }
        }

        public static void Vpmax_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (Optimizations.UseSsse3)
            {
                EmitSsse3VectorPairwiseOp32(context, op.U ? X86PmaxuInstruction : X86PmaxsInstruction);
            }
            else
            {
                EmitVectorPairwiseOpI32(context, (op1, op2) =>
                {
                    Operand greater = op.U ? context.ICompareGreaterUI(op1, op2) : context.ICompareGreater(op1, op2);
                    return context.ConditionalSelect(greater, op1, op2);
                }, !op.U);
            }
        }

        public static void Vpmin_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitSse2VectorPairwiseOpF32(context, Intrinsic.X86Minps);
            }
            else
            {
                EmitVectorPairwiseOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPMinFpscr), op1, op2));
            }
        }

        public static void Vpmin_I(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            if (Optimizations.UseSsse3)
            {
                EmitSsse3VectorPairwiseOp32(context, op.U ? X86PminuInstruction : X86PminsInstruction);
            }
            else
            {
                EmitVectorPairwiseOpI32(context, (op1, op2) =>
                {
                    Operand greater = op.U ? context.ICompareLessUI(op1, op2) : context.ICompareLess(op1, op2);
                    return context.ConditionalSelect(greater, op1, op2);
                }, !op.U);
            }
        }

        public static void Vqadd(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitSaturatingAddSubBinaryOp(context, add: true, !op.U);
        }

        public static void Vqdmulh(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
            int eSize = 8 << op.Size;

            EmitVectorBinaryOpI32(context, (op1, op2) =>
            {
                if (op.Size == 2)
                {
                    op1 = context.SignExtend32(OperandType.I64, op1);
                    op2 = context.SignExtend32(OperandType.I64, op2);
                }

                Operand res = context.Multiply(op1, op2);
                res = context.ShiftRightSI(res, Const(eSize - 1));
                res = EmitSatQ(context, res, eSize, signedSrc: true, signedDst: true);

                if (op.Size == 2)
                {
                    res = context.ConvertI64ToI32(res);
                }

                return res;
            }, signed: true);
        }

        public static void Vqmovn(ArmEmitterContext context)
        {
            OpCode32SimdMovn op = (OpCode32SimdMovn)context.CurrOp;

            bool signed = !op.Q;

            EmitVectorUnaryNarrowOp32(context, (op1) => EmitSatQ(context, op1, 8 << op.Size, signed, signed), signed);
        }

        public static void Vqmovun(ArmEmitterContext context)
        {
            OpCode32SimdMovn op = (OpCode32SimdMovn)context.CurrOp;

            EmitVectorUnaryNarrowOp32(context, (op1) => EmitSatQ(context, op1, 8 << op.Size, signedSrc: true, signedDst: false), signed: true);
        }

        public static void Vqsub(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitSaturatingAddSubBinaryOp(context, add: false, !op.U);
        }

        public static void Vrev(ArmEmitterContext context)
        {
            OpCode32SimdRev op = (OpCode32SimdRev)context.CurrOp;

            if (Optimizations.UseSsse3)
            {
                EmitVectorUnaryOpSimd32(context, (op1) =>
                {
                    Operand mask;
                    switch (op.Size)
                    {
                        case 3:
                            // Rev64
                            switch (op.Opc)
                            {
                                case 0:
                                    mask = X86GetElements(context, 0x08090a0b0c0d0e0fL, 0x0001020304050607L);
                                    return context.AddIntrinsic(Intrinsic.X86Pshufb, op1, mask);
                                case 1:
                                    mask = X86GetElements(context, 0x09080b0a0d0c0f0eL, 0x0100030205040706L);
                                    return context.AddIntrinsic(Intrinsic.X86Pshufb, op1, mask);
                                case 2:
                                    return context.AddIntrinsic(Intrinsic.X86Shufps, op1, op1, Const(1 | (0 << 2) | (3 << 4) | (2 << 6)));
                            }
                            break;
                        case 2:
                            // Rev32
                            switch (op.Opc)
                            {
                                case 0:
                                    mask = X86GetElements(context, 0x0c0d0e0f_08090a0bL, 0x04050607_00010203L);
                                    return context.AddIntrinsic(Intrinsic.X86Pshufb, op1, mask);
                                case 1:
                                    mask = X86GetElements(context, 0x0d0c0f0e_09080b0aL, 0x05040706_01000302L);
                                    return context.AddIntrinsic(Intrinsic.X86Pshufb, op1, mask);
                            }
                            break;
                        case 1:
                            // Rev16
                            mask = X86GetElements(context, 0x0e0f_0c0d_0a0b_0809L, 0x_0607_0405_0203_0001L);
                            return context.AddIntrinsic(Intrinsic.X86Pshufb, op1, mask);
                    }

                    throw new InvalidOperationException("Invalid VREV Opcode + Size combo."); // Should be unreachable.
                });
            }
            else
            {
                EmitVectorUnaryOpZx32(context, (op1) =>
                {
                    switch (op.Opc)
                    {
                        case 0:
                            switch (op.Size) // Swap bytes.
                            {
                                case 1:
                                    return InstEmitAluHelper.EmitReverseBytes16_32Op(context, op1);
                                case 2:
                                case 3:
                                    return context.ByteSwap(op1);
                            }
                            break;
                        case 1:
                            switch (op.Size)
                            {
                                case 2:
                                    return context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffff0000)), Const(16)),
                                                                context.ShiftLeft(context.BitwiseAnd(op1, Const(0x0000ffff)), Const(16)));
                                case 3:
                                    return context.BitwiseOr(
                                        context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffff000000000000ul)), Const(48)),
                                                             context.ShiftLeft(context.BitwiseAnd(op1, Const(0x000000000000fffful)), Const(48))),
                                        context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0x0000ffff00000000ul)), Const(16)),
                                                             context.ShiftLeft(context.BitwiseAnd(op1, Const(0x00000000ffff0000ul)), Const(16))));
                            }
                            break;
                        case 2:
                            // Swap upper and lower halves.
                            return context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffffffff00000000ul)), Const(32)),
                                                        context.ShiftLeft(context.BitwiseAnd(op1, Const(0x00000000fffffffful)), Const(32)));
                    }

                    throw new InvalidOperationException("Invalid VREV Opcode + Size combo."); // Should be unreachable.
                });
            }
        }

        public static void Vrecpe(ArmEmitterContext context)
        {
            OpCode32SimdSqrte op = (OpCode32SimdSqrte)context.CurrOp;

            if (op.F)
            {
                int sizeF = op.Size & 1;

                if (Optimizations.FastFP && Optimizations.UseSse2 && sizeF == 0)
                {
                    EmitVectorUnaryOpF32(context, Intrinsic.X86Rcpps, 0);
                }
                else
                {
                    EmitVectorUnaryOpF32(context, (op1) =>
                    {
                        return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPRecipEstimateFpscr), op1);
                    });
                }
            }
            else
            {
                throw new NotImplementedException("Integer Vrecpe not currently implemented.");
            }
        }

        public static void Vrecps(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
                bool single = (op.Size & 1) == 0;

                // (2 - (n*m))
                EmitVectorBinaryOpSimd32(context, (n, m) =>
                {
                    if (single)
                    {
                        Operand maskTwo = X86GetAllElements(context, 2f);

                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulps, n, m);

                        return context.AddIntrinsic(Intrinsic.X86Subps, maskTwo, res);
                    }
                    else
                    {
                        Operand maskTwo = X86GetAllElements(context, 2d);

                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulpd, n, m);

                        return context.AddIntrinsic(Intrinsic.X86Subpd, maskTwo, res);
                    }
                });
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPRecipStep), op1, op2);
                });
            }
        }

        public static void Vrhadd(ArmEmitterContext context)
        {
            OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;

            EmitVectorBinaryOpI32(context, (op1, op2) =>
            {
                if (op.Size == 2)
                {
                    op1 = context.ZeroExtend32(OperandType.I64, op1);
                    op2 = context.ZeroExtend32(OperandType.I64, op2);
                }

                Operand res = context.Add(context.Add(op1, op2), Const(op1.Type, 1L));
                res = context.ShiftRightUI(res, Const(1));

                if (op.Size == 2)
                {
                    res = context.ConvertI64ToI32(res);
                }

                return res;
            }, !op.U);
        }

        public static void Vrsqrte(ArmEmitterContext context)
        {
            OpCode32SimdSqrte op = (OpCode32SimdSqrte)context.CurrOp;

            if (op.F)
            {
                int sizeF = op.Size & 1;

                if (Optimizations.FastFP && Optimizations.UseSse2 && sizeF == 0)
                {
                    EmitVectorUnaryOpF32(context, Intrinsic.X86Rsqrtps, 0);
                }
                else
                {
                    EmitVectorUnaryOpF32(context, (op1) =>
                    {
                        return EmitSoftFloatCallDefaultFpscr(context, nameof(SoftFloat32.FPRSqrtEstimateFpscr), op1);
                    });
                }
            }
            else
            {
                throw new NotImplementedException("Integer Vrsqrte not currently implemented.");
            }
        }

        public static void Vrsqrts(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
                bool single = (op.Size & 1) == 0;

                // (3 - (n*m)) / 2
                EmitVectorBinaryOpSimd32(context, (n, m) =>
                {
                    if (single)
                    {
                        Operand maskHalf = X86GetAllElements(context, 0.5f);
                        Operand maskThree = X86GetAllElements(context, 3f);

                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulps, n, m);

                        res = context.AddIntrinsic(Intrinsic.X86Subps, maskThree, res);
                        return context.AddIntrinsic(Intrinsic.X86Mulps, maskHalf, res);
                    }
                    else
                    {
                        Operand maskHalf = X86GetAllElements(context, 0.5d);
                        Operand maskThree = X86GetAllElements(context, 3d);

                        Operand res = context.AddIntrinsic(Intrinsic.X86Mulpd, n, m);

                        res = context.AddIntrinsic(Intrinsic.X86Subpd, maskThree, res);
                        return context.AddIntrinsic(Intrinsic.X86Mulpd, maskHalf, res);
                    }
                });
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPRSqrtStep), op1, op2);
                });
            }
        }

        public static void Vsel(ArmEmitterContext context)
        {
            OpCode32SimdSel op = (OpCode32SimdSel)context.CurrOp;

            Operand condition = default;

            switch (op.Cc)
            {
                case OpCode32SimdSelMode.Eq:
                    condition = GetCondTrue(context, Condition.Eq);
                    break;
                case OpCode32SimdSelMode.Ge:
                    condition = GetCondTrue(context, Condition.Ge);
                    break;
                case OpCode32SimdSelMode.Gt:
                    condition = GetCondTrue(context, Condition.Gt);
                    break;
                case OpCode32SimdSelMode.Vs:
                    condition = GetCondTrue(context, Condition.Vs);
                    break;
            }

            EmitScalarBinaryOpI32(context, (op1, op2) =>
            {
                return context.ConditionalSelect(condition, op1, op2);
            });
        }

        public static void Vsqrt_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarUnaryOpF32(context, Intrinsic.X86Sqrtss, Intrinsic.X86Sqrtsd);
            }
            else
            {
                EmitScalarUnaryOpF32(context, (op1) =>
                {
                    return EmitSoftFloatCall(context, nameof(SoftFloat32.FPSqrt), op1);
                });
            }
        }

        public static void Vsub_S(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitScalarBinaryOpF32(context, Intrinsic.X86Subss, Intrinsic.X86Subsd);
            }
            else
            {
                EmitScalarBinaryOpF32(context, (op1, op2) => context.Subtract(op1, op2));
            }
        }

        public static void Vsub_V(ArmEmitterContext context)
        {
            if (Optimizations.FastFP && Optimizations.UseSse2)
            {
                EmitVectorBinaryOpF32(context, Intrinsic.X86Subps, Intrinsic.X86Subpd);
            }
            else
            {
                EmitVectorBinaryOpF32(context, (op1, op2) => context.Subtract(op1, op2));
            }
        }

        public static void Vsub_I(ArmEmitterContext context)
        {
            if (Optimizations.UseSse2)
            {
                OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
                EmitVectorBinaryOpSimd32(context, (op1, op2) => context.AddIntrinsic(X86PsubInstruction[op.Size], op1, op2));
            }
            else
            {
                EmitVectorBinaryOpZx32(context, (op1, op2) => context.Subtract(op1, op2));
            }
        }

        public static void Vsubl_I(ArmEmitterContext context)
        {
            OpCode32SimdRegLong op = (OpCode32SimdRegLong)context.CurrOp;

            EmitVectorBinaryLongOpI32(context, (op1, op2) => context.Subtract(op1, op2), !op.U);
        }

        public static void Vsubw_I(ArmEmitterContext context)
        {
            OpCode32SimdRegWide op = (OpCode32SimdRegWide)context.CurrOp;

            EmitVectorBinaryWideOpI32(context, (op1, op2) => context.Subtract(op1, op2), !op.U);
        }

        private static void EmitSaturatingAddSubBinaryOp(ArmEmitterContext context, bool add, bool signed)
        {
            OpCode32Simd op = (OpCode32Simd)context.CurrOp;

            EmitVectorBinaryOpI32(context, (ne, me) =>
            {
                if (op.Size <= 2)
                {
                    if (op.Size == 2)
                    {
                        ne = signed ? context.SignExtend32(OperandType.I64, ne) : context.ZeroExtend32(OperandType.I64, ne);
                        me = signed ? context.SignExtend32(OperandType.I64, me) : context.ZeroExtend32(OperandType.I64, me);
                    }

                    Operand res = add ? context.Add(ne, me) : context.Subtract(ne, me);

                    res = EmitSatQ(context, res, 8 << op.Size, signedSrc: true, signed);

                    if (op.Size == 2)
                    {
                        res = context.ConvertI64ToI32(res);
                    }

                    return res;
                }
                else if (add) /* if (op.Size == 3) */
                {
                    return signed
                        ? EmitBinarySignedSatQAdd(context, ne, me)
                        : EmitBinaryUnsignedSatQAdd(context, ne, me);
                }
                else /* if (sub) */
                {
                    return signed
                        ? EmitBinarySignedSatQSub(context, ne, me)
                        : EmitBinaryUnsignedSatQSub(context, ne, me);
                }
            }, signed);
        }

        private static void EmitSse41MaxMinNumOpF32(ArmEmitterContext context, bool isMaxNum, bool scalar)
        {
            IOpCode32Simd op = (IOpCode32Simd)context.CurrOp;

            Func<Operand, Operand, Operand> genericEmit = (n, m) =>
            {
                Operand nNum = context.Copy(n);
                Operand mNum = context.Copy(m);

                InstEmit.EmitSse2VectorIsNaNOpF(context, nNum, out Operand nQNaNMask, out _, isQNaN: true);
                InstEmit.EmitSse2VectorIsNaNOpF(context, mNum, out Operand mQNaNMask, out _, isQNaN: true);

                int sizeF = op.Size & 1;

                if (sizeF == 0)
                {
                    Operand negInfMask = X86GetAllElements(context, isMaxNum ? float.NegativeInfinity : float.PositiveInfinity);

                    Operand nMask = context.AddIntrinsic(Intrinsic.X86Andnps, mQNaNMask, nQNaNMask);
                    Operand mMask = context.AddIntrinsic(Intrinsic.X86Andnps, nQNaNMask, mQNaNMask);

                    nNum = context.AddIntrinsic(Intrinsic.X86Blendvps, nNum, negInfMask, nMask);
                    mNum = context.AddIntrinsic(Intrinsic.X86Blendvps, mNum, negInfMask, mMask);

                    return context.AddIntrinsic(isMaxNum ? Intrinsic.X86Maxps : Intrinsic.X86Minps, nNum, mNum);
                }
                else /* if (sizeF == 1) */
                {
                    Operand negInfMask = X86GetAllElements(context, isMaxNum ? double.NegativeInfinity : double.PositiveInfinity);

                    Operand nMask = context.AddIntrinsic(Intrinsic.X86Andnpd, mQNaNMask, nQNaNMask);
                    Operand mMask = context.AddIntrinsic(Intrinsic.X86Andnpd, nQNaNMask, mQNaNMask);

                    nNum = context.AddIntrinsic(Intrinsic.X86Blendvpd, nNum, negInfMask, nMask);
                    mNum = context.AddIntrinsic(Intrinsic.X86Blendvpd, mNum, negInfMask, mMask);

                    return context.AddIntrinsic(isMaxNum ? Intrinsic.X86Maxpd : Intrinsic.X86Minpd, nNum, mNum);
                }
            };

            if (scalar)
            {
                EmitScalarBinaryOpSimd32(context, genericEmit);
            }
            else
            {
                EmitVectorBinaryOpSimd32(context, genericEmit);
            }
        }
    }
}