1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2025-01-22 01:37:08 +00:00
Ryujinx/Ryujinx.Memory.Tests/TrackingTests.cs
riperiperi d92fff541b
Replace CacheResourceWrite with more general "precise" write (#2684)
* Replace CacheResourceWrite with more general "precise" write

The goal of CacheResourceWrite was to notify GPU resources when they were modified directly, by looking up the modified address/size in a structure and calling a method on each resource. The downside of this is that each resource cache has to be queried individually, they all have to implement their own way to do this, and it can only signal to resources using the same PhysicalMemory instance.

This PR adds the ability to signal a write as "precise" on the tracking, which signals a special handler (if present) which can be used to avoid unnecessary flush actions, or maybe even more. For buffers, precise writes specifically do not flush, and instead punch a hole in the modified range list to indicate that the data on GPU has been replaced.

The downside is that precise actions must ignore the page protection bits and always signal - as they need to notify the target resource to ignore the sequence number optimization.

I had to reintroduce the sequence number increment after I2M, as removing it was causing issues in rabbids kingdom battle. However - all resources modified by I2M are notified directly to lower their sequence number, so the problem is likely that another unrelated resource is not being properly updated. Thankfully, doing this does not affect performance in the games I tested.

This should fix regressions from #2624. Test any games that were broken by that. (RF4, rabbids kingdom battle)

I've also added a sequence number increment to ThreedClass.IncrementSyncpoint, as it seems to fix buffer corruption in OpenGL homebrew. (this was a regression from removing sequence number increment from constant buffer update - another unrelated resource thing)

* Add tests.

* Add XML docs for GpuRegionHandle

* Skip UpdateProtection if only precise actions were called

This allows precise actions to skip reprotection costs.
2021-09-29 02:27:03 +02:00

509 lines
19 KiB
C#

using NUnit.Framework;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
namespace Ryujinx.Memory.Tests
{
public class TrackingTests
{
private const int RndCnt = 3;
private const ulong MemorySize = 0x8000;
private const int PageSize = 4096;
private MemoryBlock _memoryBlock;
private MemoryTracking _tracking;
private MockVirtualMemoryManager _memoryManager;
[SetUp]
public void Setup()
{
_memoryBlock = new MemoryBlock(MemorySize);
_memoryManager = new MockVirtualMemoryManager(MemorySize, PageSize);
_tracking = new MemoryTracking(_memoryManager, PageSize);
}
[TearDown]
public void Teardown()
{
_memoryBlock.Dispose();
}
private bool TestSingleWrite(RegionHandle handle, ulong address, ulong size)
{
handle.Reprotect();
_tracking.VirtualMemoryEvent(address, size, true);
return handle.Dirty;
}
[Test]
public void SingleRegion()
{
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
(ulong address, ulong size)? readTrackingTriggered = null;
handle.RegisterAction((address, size) =>
{
readTrackingTriggered = (address, size);
});
bool dirtyInitial = handle.Dirty;
Assert.True(dirtyInitial); // Handle starts dirty.
handle.Reprotect();
bool dirtyAfterReprotect = handle.Dirty;
Assert.False(dirtyAfterReprotect); // Handle is no longer dirty.
_tracking.VirtualMemoryEvent(PageSize * 2, 4, true);
_tracking.VirtualMemoryEvent(PageSize * 2, 4, false);
bool dirtyAfterUnrelatedReadWrite = handle.Dirty;
Assert.False(dirtyAfterUnrelatedReadWrite); // Not dirtied, as the write was to an unrelated address.
Assert.IsNull(readTrackingTriggered); // Hasn't been triggered yet
_tracking.VirtualMemoryEvent(0, 4, false);
bool dirtyAfterRelatedRead = handle.Dirty;
Assert.False(dirtyAfterRelatedRead); // Only triggers on write.
Assert.AreEqual(readTrackingTriggered, (0UL, 4UL)); // Read action was triggered.
readTrackingTriggered = null;
_tracking.VirtualMemoryEvent(0, 4, true);
bool dirtyAfterRelatedWrite = handle.Dirty;
Assert.True(dirtyAfterRelatedWrite); // Dirty flag should now be set.
_tracking.VirtualMemoryEvent(4, 4, true);
bool dirtyAfterRelatedWrite2 = handle.Dirty;
Assert.True(dirtyAfterRelatedWrite2); // Dirty flag should still be set.
handle.Reprotect();
bool dirtyAfterReprotect2 = handle.Dirty;
Assert.False(dirtyAfterReprotect2); // Handle is no longer dirty.
handle.Dispose();
bool dirtyAfterDispose = TestSingleWrite(handle, 0, 4);
Assert.False(dirtyAfterDispose); // Handle cannot be triggered when disposed
}
[Test]
public void OverlappingRegions()
{
RegionHandle allHandle = _tracking.BeginTracking(0, PageSize * 16);
allHandle.Reprotect();
(ulong address, ulong size)? readTrackingTriggeredAll = null;
Action registerReadAction = () =>
{
readTrackingTriggeredAll = null;
allHandle.RegisterAction((address, size) =>
{
readTrackingTriggeredAll = (address, size);
});
};
registerReadAction();
// Create 16 page sized handles contained within the allHandle.
RegionHandle[] containedHandles = new RegionHandle[16];
for (int i = 0; i < 16; i++)
{
containedHandles[i] = _tracking.BeginTracking((ulong)i * PageSize, PageSize);
containedHandles[i].Reprotect();
}
for (int i = 0; i < 16; i++)
{
// No handles are dirty.
Assert.False(allHandle.Dirty);
Assert.IsNull(readTrackingTriggeredAll);
for (int j = 0; j < 16; j++)
{
Assert.False(containedHandles[j].Dirty);
}
_tracking.VirtualMemoryEvent((ulong)i * PageSize, 1, true);
// Only the handle covering the entire range and the relevant contained handle are dirty.
Assert.True(allHandle.Dirty);
Assert.AreEqual(readTrackingTriggeredAll, ((ulong)i * PageSize, 1UL)); // Triggered read tracking
for (int j = 0; j < 16; j++)
{
if (j == i)
{
Assert.True(containedHandles[j].Dirty);
}
else
{
Assert.False(containedHandles[j].Dirty);
}
}
// Clear flags and reset read action.
registerReadAction();
allHandle.Reprotect();
containedHandles[i].Reprotect();
}
}
[Test]
public void PageAlignment(
[Values(1ul, 512ul, 2048ul, 4096ul, 65536ul)] [Random(1ul, 65536ul, RndCnt)] ulong address,
[Values(1ul, 4ul, 1024ul, 4096ul, 65536ul)] [Random(1ul, 65536ul, RndCnt)] ulong size)
{
ulong alignedStart = (address / PageSize) * PageSize;
ulong alignedEnd = ((address + size + PageSize - 1) / PageSize) * PageSize;
ulong alignedSize = alignedEnd - alignedStart;
RegionHandle handle = _tracking.BeginTracking(address, size);
// Anywhere inside the pages the region is contained on should trigger.
bool originalRangeTriggers = TestSingleWrite(handle, address, size);
Assert.True(originalRangeTriggers);
bool alignedRangeTriggers = TestSingleWrite(handle, alignedStart, alignedSize);
Assert.True(alignedRangeTriggers);
bool alignedStartTriggers = TestSingleWrite(handle, alignedStart, 1);
Assert.True(alignedStartTriggers);
bool alignedEndTriggers = TestSingleWrite(handle, alignedEnd - 1, 1);
Assert.True(alignedEndTriggers);
// Outside the tracked range should not trigger.
bool alignedBeforeTriggers = TestSingleWrite(handle, alignedStart - 1, 1);
Assert.False(alignedBeforeTriggers);
bool alignedAfterTriggers = TestSingleWrite(handle, alignedEnd, 1);
Assert.False(alignedAfterTriggers);
}
[Test, Timeout(1000)]
public void Multithreading()
{
// Multithreading sanity test
// Multiple threads can easily read/write memory regions from any existing handle.
// Handles can also be owned by different threads, though they should have one owner thread.
// Handles can be created and disposed at any time, by any thread.
// This test should not throw or deadlock due to invalid state.
const int threadCount = 1;
const int handlesPerThread = 16;
long finishedTime = 0;
RegionHandle[] handles = new RegionHandle[threadCount * handlesPerThread];
Random globalRand = new Random();
for (int i = 0; i < handles.Length; i++)
{
handles[i] = _tracking.BeginTracking((ulong)i * PageSize, PageSize);
handles[i].Reprotect();
}
List<Thread> testThreads = new List<Thread>();
// Dirty flag consumer threads
int dirtyFlagReprotects = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
int handleBase = randSeed * handlesPerThread;
while (Stopwatch.GetTimestamp() < finishedTime)
{
Random random = new Random(randSeed);
RegionHandle handle = handles[handleBase + random.Next(handlesPerThread)];
if (handle.Dirty)
{
handle.Reprotect();
Interlocked.Increment(ref dirtyFlagReprotects);
}
}
}));
}
// Write trigger threads
int writeTriggers = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
Random random = new Random(randSeed);
ulong handleBase = (ulong)(randSeed * handlesPerThread * PageSize);
while (Stopwatch.GetTimestamp() < finishedTime)
{
_tracking.VirtualMemoryEvent(handleBase + (ulong)random.Next(PageSize * handlesPerThread), PageSize / 2, true);
Interlocked.Increment(ref writeTriggers);
}
}));
}
// Handle create/delete threads
int handleLifecycles = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
int maxAddress = threadCount * handlesPerThread * PageSize;
Random random = new Random(randSeed + 512);
while (Stopwatch.GetTimestamp() < finishedTime)
{
RegionHandle handle = _tracking.BeginTracking((ulong)random.Next(maxAddress), (ulong)random.Next(65536));
handle.Dispose();
Interlocked.Increment(ref handleLifecycles);
}
}));
}
finishedTime = Stopwatch.GetTimestamp() + Stopwatch.Frequency / 2; // Run for 500ms;
foreach (Thread thread in testThreads)
{
thread.Start();
}
foreach (Thread thread in testThreads)
{
thread.Join();
}
Assert.Greater(dirtyFlagReprotects, 10);
Assert.Greater(writeTriggers, 10);
Assert.Greater(handleLifecycles, 10);
}
[Test]
public void ReadActionThreadConsumption()
{
// Read actions should only be triggered once for each registration.
// The implementation should use an interlocked exchange to make sure other threads can't get the action.
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
int triggeredCount = 0;
int registeredCount = 0;
int signalThreadsDone = 0;
bool isRegistered = false;
Action registerReadAction = () =>
{
registeredCount++;
handle.RegisterAction((address, size) =>
{
isRegistered = false;
Interlocked.Increment(ref triggeredCount);
});
};
const int threadCount = 16;
const int iterationCount = 10000;
Thread[] signalThreads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
signalThreads[i] = new Thread(() =>
{
Random random = new Random(randSeed);
for (int j = 0; j < iterationCount; j++)
{
_tracking.VirtualMemoryEvent((ulong)random.Next(PageSize), 4, false);
}
Interlocked.Increment(ref signalThreadsDone);
});
}
for (int i = 0; i < threadCount; i++)
{
signalThreads[i].Start();
}
while (signalThreadsDone != -1)
{
if (signalThreadsDone == threadCount)
{
signalThreadsDone = -1;
}
if (!isRegistered)
{
isRegistered = true;
registerReadAction();
}
}
// The action should trigger exactly once for every registration,
// then we register once after all the threads signalling it cease.
Assert.AreEqual(registeredCount, triggeredCount + 1);
}
[Test]
public void DisposeHandles()
{
// Ensure that disposed handles correctly remove their virtual and physical regions.
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
handle.Reprotect();
Assert.AreEqual(1, _tracking.GetRegionCount());
handle.Dispose();
Assert.AreEqual(0, _tracking.GetRegionCount());
// Two handles, small entirely contains big.
// We expect there to be three regions after creating both, one for the small region and two covering the big one around it.
// Regions are always split to avoid overlapping, which is why there are three instead of two.
RegionHandle handleSmall = _tracking.BeginTracking(PageSize, PageSize);
RegionHandle handleBig = _tracking.BeginTracking(0, PageSize * 4);
Assert.AreEqual(3, _tracking.GetRegionCount());
// After disposing the big region, only the small one will remain.
handleBig.Dispose();
Assert.AreEqual(1, _tracking.GetRegionCount());
handleSmall.Dispose();
Assert.AreEqual(0, _tracking.GetRegionCount());
}
[Test]
public void ReadAndWriteProtection()
{
MemoryPermission protection = MemoryPermission.ReadAndWrite;
_memoryManager.OnProtect += (va, size, newProtection) =>
{
Assert.AreEqual((0, PageSize), (va, size)); // Should protect the exact region all the operations use.
protection = newProtection;
};
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
// After creating the handle, there is no protection yet.
Assert.AreEqual(MemoryPermission.ReadAndWrite, protection);
bool dirtyInitial = handle.Dirty;
Assert.True(dirtyInitial); // Handle starts dirty.
handle.Reprotect();
// After a reprotect, there is write protection, which will set a dirty flag when any write happens.
Assert.AreEqual(MemoryPermission.Read, protection);
(ulong address, ulong size)? readTrackingTriggered = null;
handle.RegisterAction((address, size) =>
{
readTrackingTriggered = (address, size);
});
// Registering an action adds read/write protection.
Assert.AreEqual(MemoryPermission.None, protection);
bool dirtyAfterReprotect = handle.Dirty;
Assert.False(dirtyAfterReprotect); // Handle is no longer dirty.
// First we should read, which will trigger the action. This _should not_ remove write protection on the memory.
_tracking.VirtualMemoryEvent(0, 4, false);
bool dirtyAfterRead = handle.Dirty;
Assert.False(dirtyAfterRead); // Not dirtied, as this was a read.
Assert.AreEqual(readTrackingTriggered, (0UL, 4UL)); // Read action was triggered.
Assert.AreEqual(MemoryPermission.Read, protection); // Write protection is still present.
readTrackingTriggered = null;
// Now, perform a write.
_tracking.VirtualMemoryEvent(0, 4, true);
bool dirtyAfterWriteAfterRead = handle.Dirty;
Assert.True(dirtyAfterWriteAfterRead); // Should be dirty.
Assert.AreEqual(MemoryPermission.ReadAndWrite, protection); // All protection is now be removed from the memory.
Assert.IsNull(readTrackingTriggered); // Read tracking was removed when the action fired, as it can only fire once.
handle.Dispose();
}
[Test]
public void PreciseAction()
{
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
(ulong address, ulong size, bool write)? preciseTriggered = null;
handle.RegisterPreciseAction((address, size, write) =>
{
preciseTriggered = (address, size, write);
return true;
});
(ulong address, ulong size)? readTrackingTriggered = null;
handle.RegisterAction((address, size) =>
{
readTrackingTriggered = (address, size);
});
handle.Reprotect();
_tracking.VirtualMemoryEvent(0, 4, false, precise: true);
Assert.IsNull(readTrackingTriggered); // Hasn't been triggered - precise action returned true.
Assert.AreEqual(preciseTriggered, (0UL, 4UL, false)); // Precise action was triggered.
_tracking.VirtualMemoryEvent(0, 4, true, precise: true);
Assert.IsNull(readTrackingTriggered); // Still hasn't been triggered.
bool dirtyAfterPreciseActionTrue = handle.Dirty;
Assert.False(dirtyAfterPreciseActionTrue); // Not dirtied - precise action returned true.
Assert.AreEqual(preciseTriggered, (0UL, 4UL, true)); // Precise action was triggered.
// Handle is now dirty.
handle.Reprotect(true);
preciseTriggered = null;
_tracking.VirtualMemoryEvent(4, 4, true, precise: true);
Assert.AreEqual(preciseTriggered, (4UL, 4UL, true)); // Precise action was triggered even though handle was dirty.
handle.Reprotect();
handle.RegisterPreciseAction((address, size, write) =>
{
preciseTriggered = (address, size, write);
return false; // Now, we return false, which indicates that the regular read/write behaviours should trigger.
});
_tracking.VirtualMemoryEvent(8, 4, true, precise: true);
Assert.AreEqual(readTrackingTriggered, (8UL, 4UL)); // Read action triggered, as precise action returned false.
bool dirtyAfterPreciseActionFalse = handle.Dirty;
Assert.True(dirtyAfterPreciseActionFalse); // Dirtied, as precise action returned false.
Assert.AreEqual(preciseTriggered, (8UL, 4UL, true)); // Precise action was triggered.
}
}
}