1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-05 01:22:03 +00:00
Ryujinx/Ryujinx.Tests/Cpu/CpuTest32.cs
Mary 863edae328
shader cache: Fix Linux boot issues (#1709)
* shader cache: Fix Linux boot issues

This rollback the init logic back to previous state, and replicate the
way PTC handle initialization.

* shader cache: set default state of ready for translation event to false

* Fix cpu unit tests
2020-11-17 22:40:19 +01:00

569 lines
21 KiB
C#

using ARMeilleure.State;
using ARMeilleure.Translation;
using NUnit.Framework;
using Ryujinx.Cpu;
using Ryujinx.Memory;
using Ryujinx.Tests.Unicorn;
using System;
using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission;
namespace Ryujinx.Tests.Cpu
{
[TestFixture]
public class CpuTest32
{
protected const uint Size = 0x1000;
protected const uint CodeBaseAddress = 0x1000;
protected const uint DataBaseAddress = CodeBaseAddress + Size;
private uint _currAddress;
private MemoryBlock _ram;
private MemoryManager _memory;
private ExecutionContext _context;
private CpuContext _cpuContext;
private static bool _unicornAvailable;
private UnicornAArch32 _unicornEmu;
private bool _usingMemory;
static CpuTest32()
{
_unicornAvailable = UnicornAArch32.IsAvailable();
if (!_unicornAvailable)
{
Console.WriteLine("WARNING: Could not find Unicorn.");
}
}
[SetUp]
public void Setup()
{
_currAddress = CodeBaseAddress;
_ram = new MemoryBlock(Size * 2);
_memory = new MemoryManager(_ram, 1ul << 16);
_memory.Map(CodeBaseAddress, 0, Size * 2);
_context = CpuContext.CreateExecutionContext();
_context.IsAarch32 = true;
Translator.IsReadyForTranslation.Set();
_cpuContext = new CpuContext(_memory);
if (_unicornAvailable)
{
_unicornEmu = new UnicornAArch32();
_unicornEmu.MemoryMap(CodeBaseAddress, Size, MemoryPermission.READ | MemoryPermission.EXEC);
_unicornEmu.MemoryMap(DataBaseAddress, Size, MemoryPermission.READ | MemoryPermission.WRITE);
_unicornEmu.PC = CodeBaseAddress;
}
}
[TearDown]
public void Teardown()
{
_memory.Dispose();
_context.Dispose();
_ram.Dispose();
_memory = null;
_context = null;
_cpuContext = null;
_unicornEmu = null;
_usingMemory = false;
}
protected void Reset()
{
Teardown();
Setup();
}
protected void Opcode(uint opcode)
{
_memory.Write(_currAddress, opcode);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite32(_currAddress, opcode);
}
_currAddress += 4;
}
protected ExecutionContext GetContext() => _context;
protected void SetContext(uint r0 = 0,
uint r1 = 0,
uint r2 = 0,
uint r3 = 0,
uint sp = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v14 = default,
V128 v15 = default,
bool saturation = false,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpscr = 0)
{
_context.SetX(0, r0);
_context.SetX(1, r1);
_context.SetX(2, r2);
_context.SetX(3, r3);
_context.SetX(13, sp);
_context.SetV(0, v0);
_context.SetV(1, v1);
_context.SetV(2, v2);
_context.SetV(3, v3);
_context.SetV(4, v4);
_context.SetV(5, v5);
_context.SetV(14, v14);
_context.SetV(15, v15);
_context.SetPstateFlag(PState.QFlag, saturation);
_context.SetPstateFlag(PState.VFlag, overflow);
_context.SetPstateFlag(PState.CFlag, carry);
_context.SetPstateFlag(PState.ZFlag, zero);
_context.SetPstateFlag(PState.NFlag, negative);
SetFpscr((uint)fpscr);
if (_unicornAvailable)
{
_unicornEmu.R[0] = r0;
_unicornEmu.R[1] = r1;
_unicornEmu.R[2] = r2;
_unicornEmu.R[3] = r3;
_unicornEmu.SP = sp;
_unicornEmu.Q[0] = V128ToSimdValue(v0);
_unicornEmu.Q[1] = V128ToSimdValue(v1);
_unicornEmu.Q[2] = V128ToSimdValue(v2);
_unicornEmu.Q[3] = V128ToSimdValue(v3);
_unicornEmu.Q[4] = V128ToSimdValue(v4);
_unicornEmu.Q[5] = V128ToSimdValue(v5);
_unicornEmu.Q[14] = V128ToSimdValue(v14);
_unicornEmu.Q[15] = V128ToSimdValue(v15);
_unicornEmu.QFlag = saturation;
_unicornEmu.OverflowFlag = overflow;
_unicornEmu.CarryFlag = carry;
_unicornEmu.ZeroFlag = zero;
_unicornEmu.NegativeFlag = negative;
_unicornEmu.Fpscr = fpscr;
}
}
protected void ExecuteOpcodes(bool runUnicorn = true)
{
_cpuContext.Execute(_context, CodeBaseAddress);
if (_unicornAvailable && runUnicorn)
{
_unicornEmu.RunForCount((_currAddress - CodeBaseAddress - 4) / 4);
}
}
protected ExecutionContext SingleOpcode(uint opcode,
uint r0 = 0,
uint r1 = 0,
uint r2 = 0,
uint r3 = 0,
uint sp = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v14 = default,
V128 v15 = default,
bool saturation = false,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpscr = 0,
bool runUnicorn = true)
{
Opcode(opcode);
Opcode(0xE12FFF1E); // BX LR
SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, saturation, overflow, carry, zero, negative, fpscr);
ExecuteOpcodes(runUnicorn);
return GetContext();
}
protected void SetWorkingMemory(uint offset, byte[] data)
{
_memory.Write(DataBaseAddress + offset, data);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite(DataBaseAddress + offset, data);
}
_usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too.
}
/// <summary>Rounding Mode control field.</summary>
public enum RMode
{
/// <summary>Round to Nearest mode.</summary>
Rn,
/// <summary>Round towards Plus Infinity mode.</summary>
Rp,
/// <summary>Round towards Minus Infinity mode.</summary>
Rm,
/// <summary>Round towards Zero mode.</summary>
Rz
};
/// <summary>Floating-point Control Register.</summary>
protected enum Fpcr
{
/// <summary>Rounding Mode control field.</summary>
RMode = 22,
/// <summary>Flush-to-zero mode control bit.</summary>
Fz = 24,
/// <summary>Default NaN mode control bit.</summary>
Dn = 25,
/// <summary>Alternative half-precision control bit.</summary>
Ahp = 26
}
/// <summary>Floating-point Status Register.</summary>
[Flags]
protected enum Fpsr
{
None = 0,
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
Ioc = 1 << 0,
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
Dzc = 1 << 1,
/// <summary>Overflow cumulative floating-point exception bit.</summary>
Ofc = 1 << 2,
/// <summary>Underflow cumulative floating-point exception bit.</summary>
Ufc = 1 << 3,
/// <summary>Inexact cumulative floating-point exception bit.</summary>
Ixc = 1 << 4,
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
Idc = 1 << 7,
/// <summary>Cumulative saturation bit.</summary>
Qc = 1 << 27,
/// <summary>NZCV flags.</summary>
Nzcv = (1 << 31) | (1 << 30) | (1 << 29) | (1 << 28)
}
[Flags]
protected enum FpSkips
{
None = 0,
IfNaNS = 1,
IfNaND = 2,
IfUnderflow = 4,
IfOverflow = 8
}
protected enum FpTolerances
{
None,
UpToOneUlpsS,
UpToOneUlpsD
}
protected void CompareAgainstUnicorn(
Fpsr fpsrMask = Fpsr.None,
FpSkips fpSkips = FpSkips.None,
FpTolerances fpTolerances = FpTolerances.None)
{
if (!_unicornAvailable)
{
return;
}
if (fpSkips != FpSkips.None)
{
ManageFpSkips(fpSkips);
}
Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.R[0]), "R0");
Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.R[1]), "R1");
Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.R[2]), "R2");
Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.R[3]), "R3");
Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.R[4]));
Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.R[5]));
Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.R[6]));
Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.R[7]));
Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.R[8]));
Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.R[9]));
Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.R[10]));
Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.R[11]));
Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.R[12]));
Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.SP), "SP");
Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.R[14]));
if (fpTolerances == FpTolerances.None)
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]), "V0");
}
else
{
ManageFpTolerances(fpTolerances);
}
Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]), "V1");
Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]), "V2");
Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]), "V3");
Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]), "V4");
Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]), "V5");
Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6]));
Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7]));
Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8]));
Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9]));
Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10]));
Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11]));
Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12]));
Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13]));
Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]), "V14");
Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]), "V15");
Assert.Multiple(() =>
{
Assert.That(_context.GetPstateFlag(PState.QFlag), Is.EqualTo(_unicornEmu.QFlag), "QFlag");
Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag), "VFlag");
Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag), "CFlag");
Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag), "ZFlag");
Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag), "NFlag");
});
Assert.That((int)GetFpscr() & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpscr & (int)fpsrMask), "Fpscr");
if (_usingMemory)
{
byte[] mem = _memory.GetSpan(DataBaseAddress, (int)Size).ToArray();
byte[] unicornMem = _unicornEmu.MemoryRead(DataBaseAddress, Size);
Assert.That(mem, Is.EqualTo(unicornMem), "Data");
}
}
private void ManageFpSkips(FpSkips fpSkips)
{
if (fpSkips.HasFlag(FpSkips.IfNaNS))
{
if (float.IsNaN(_unicornEmu.Q[0].AsFloat()))
{
Assert.Ignore("NaN test.");
}
}
else if (fpSkips.HasFlag(FpSkips.IfNaND))
{
if (double.IsNaN(_unicornEmu.Q[0].AsDouble()))
{
Assert.Ignore("NaN test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfUnderflow))
{
if ((_unicornEmu.Fpscr & (int)Fpsr.Ufc) != 0)
{
Assert.Ignore("Underflow test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfOverflow))
{
if ((_unicornEmu.Fpscr & (int)Fpsr.Ofc) != 0)
{
Assert.Ignore("Overflow test.");
}
}
}
private void ManageFpTolerances(FpTolerances fpTolerances)
{
bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f);
bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d);
if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess)
{
if (fpTolerances == FpTolerances.UpToOneUlpsS)
{
if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) &&
IsNormalOrSubnormalS(_context.GetV(0).As<float>()))
{
Assert.Multiple(() =>
{
Assert.That(_context.GetV(0).Extract<float>(0),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps, "V0[0]");
Assert.That(_context.GetV(0).Extract<float>(1),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps, "V0[1]");
Assert.That(_context.GetV(0).Extract<float>(2),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps, "V0[2]");
Assert.That(_context.GetV(0).Extract<float>(3),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps, "V0[3]");
});
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
if (fpTolerances == FpTolerances.UpToOneUlpsD)
{
if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) &&
IsNormalOrSubnormalD(_context.GetV(0).As<double>()))
{
Assert.Multiple(() =>
{
Assert.That(_context.GetV(0).Extract<double>(0),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps, "V0[0]");
Assert.That(_context.GetV(0).Extract<double>(1),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps, "V0[1]");
});
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
}
}
private static SimdValue V128ToSimdValue(V128 value)
{
return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1));
}
protected static V128 MakeVectorScalar(float value) => new V128(value);
protected static V128 MakeVectorScalar(double value) => new V128(value);
protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0);
protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1);
protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1);
protected static V128 MakeVectorE0E1E2E3(uint e0, uint e1, uint e2, uint e3)
{
return new V128(e0, e1, e2, e3);
}
protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0);
protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1);
protected static ushort GenNormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x7C00u) == 0u ||
(~rnd & 0x7C00u) == 0u);
return (ushort)rnd;
}
protected static ushort GenSubnormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x03FFu) == 0u);
return (ushort)(rnd & 0x83FFu);
}
protected static uint GenNormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x7F800000u) == 0u ||
(~rnd & 0x7F800000u) == 0u);
return rnd;
}
protected static uint GenSubnormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x007FFFFFu) == 0u);
return rnd & 0x807FFFFFu;
}
protected static ulong GenNormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x7FF0000000000000ul) == 0ul ||
(~rnd & 0x7FF0000000000000ul) == 0ul);
return rnd;
}
protected static ulong GenSubnormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
return rnd & 0x800FFFFFFFFFFFFFul;
}
private uint GetFpscr()
{
uint fpscr = (uint)(_context.Fpsr & FPSR.A32Mask & ~FPSR.Nzcv) | (uint)(_context.Fpcr & FPCR.A32Mask);
fpscr |= _context.GetFPstateFlag(FPState.NFlag) ? (1u << (int)FPState.NFlag) : 0;
fpscr |= _context.GetFPstateFlag(FPState.ZFlag) ? (1u << (int)FPState.ZFlag) : 0;
fpscr |= _context.GetFPstateFlag(FPState.CFlag) ? (1u << (int)FPState.CFlag) : 0;
fpscr |= _context.GetFPstateFlag(FPState.VFlag) ? (1u << (int)FPState.VFlag) : 0;
return fpscr;
}
private void SetFpscr(uint fpscr)
{
_context.Fpsr = FPSR.A32Mask & (FPSR)fpscr;
_context.Fpcr = FPCR.A32Mask & (FPCR)fpscr;
_context.SetFPstateFlag(FPState.NFlag, (fpscr & (1u << (int)FPState.NFlag)) != 0);
_context.SetFPstateFlag(FPState.ZFlag, (fpscr & (1u << (int)FPState.ZFlag)) != 0);
_context.SetFPstateFlag(FPState.CFlag, (fpscr & (1u << (int)FPState.CFlag)) != 0);
_context.SetFPstateFlag(FPState.VFlag, (fpscr & (1u << (int)FPState.VFlag)) != 0);
}
}
}