1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-30 19:22:02 +00:00
Ryujinx/ARMeilleure/Translation/Translator.cs
riperiperi 8226997bc7
CodeGen Optimisations (LSRA and Translator) (#978)
* Start of JIT garbage collection improvements

- thread static pool for Operand, MemoryOperand, Operation
- Operands and Operations are always to be constructed via their static
helper classes, so they can be pooled.
- removing LinkedList from Node for sources/destinations (replaced with
List<>s for now, but probably could do arrays since size is bounded)
- removing params constructors from Node
- LinkedList<> to List<> with Clear() for Operand assignments/uses
- ThreadStaticPool is very simple and basically just exists for the
purpose of our specific translation allocation problem. Right now it
will stay at the worst case allocation count for that thread (so far) -
the pool can never shrink.

- Still some cases of Operand[] that haven't been removed yet. Will need
to evaluate them (eg. is there a reasonable max number of params for
Calls?)

* ConcurrentStack instead of ConcurrentQueue for Rejit

* Optimize some parts of LSRA

- BitMap now operates on 64-bit int rather than 32-bit
- BitMap is now pooled in a ThreadStatic pool (within lrsa)
- BitMap now is now its own iterator. Marginally speeds up iterating
through the bits.
- A few cases where enumerators were generated have been converted to
forms that generate less garbage.
- New data structure for sorting _usePositions in LiveIntervals. Much
faster split, NextUseAfter, initial insertion. Random insertion is
slightly slower.
- That last one is WIP since you need to insert the values backwards. It
would be ideal if it just flipped it for you, uncomplicating things on
the caller side.

* Use a static pool of thread static pools. (yes.)

Prevents each execution thread creating its own lowCq pool and making me cry.

* Move constant value to top, change naming convention.

* Fix iteration of memory operands.

* Increase max thread count.

* Address Feedback
2020-03-18 22:44:32 +11:00

284 lines
No EOL
9.9 KiB
C#

using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.State;
using System;
using System.Collections.Concurrent;
using System.Threading;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.Translation
{
public class Translator
{
private const ulong CallFlag = InstEmitFlowHelper.CallFlag;
private const bool AlwaysTranslateFunctions = true; // If false, only translates a single block for lowCq.
private MemoryManager _memory;
private ConcurrentDictionary<ulong, TranslatedFunction> _funcs;
private JumpTable _jumpTable;
private PriorityQueue<RejitRequest> _backgroundQueue;
private AutoResetEvent _backgroundTranslatorEvent;
private volatile int _threadCount;
public Translator(MemoryManager memory)
{
_memory = memory;
_funcs = new ConcurrentDictionary<ulong, TranslatedFunction>();
_jumpTable = JumpTable.Instance;
_backgroundQueue = new PriorityQueue<RejitRequest>(2);
_backgroundTranslatorEvent = new AutoResetEvent(false);
DirectCallStubs.InitializeStubs();
}
private void TranslateQueuedSubs()
{
while (_threadCount != 0)
{
if (_backgroundQueue.TryDequeue(out RejitRequest request))
{
TranslatedFunction func = Translate(request.Address, request.Mode, highCq: true);
_funcs.AddOrUpdate(request.Address, func, (key, oldFunc) => func);
_jumpTable.RegisterFunction(request.Address, func);
}
else
{
_backgroundTranslatorEvent.WaitOne();
}
}
_backgroundTranslatorEvent.Set(); // Wake up any other background translator threads, to encourage them to exit.
}
public void Execute(State.ExecutionContext context, ulong address)
{
if (Interlocked.Increment(ref _threadCount) == 1)
{
// Simple heuristic, should be user configurable in future. (1 for 4 core/ht or less, 2 for 6 core+ht etc).
// All threads are normal priority except from the last, which just fills as much of the last core as the os lets it with a low priority.
// If we only have one rejit thread, it should be normal priority as highCq code is performance critical.
// TODO: Use physical cores rather than logical. This only really makes sense for processors with hyperthreading. Requires OS specific code.
int unboundedThreadCount = Math.Max(1, (Environment.ProcessorCount - 6) / 3);
int threadCount = Math.Min(4, unboundedThreadCount);
for (int i = 0; i < threadCount; i++)
{
bool last = i != 0 && i == unboundedThreadCount - 1;
Thread backgroundTranslatorThread = new Thread(TranslateQueuedSubs)
{
Name = "CPU.BackgroundTranslatorThread." + i,
Priority = last ? ThreadPriority.Lowest : ThreadPriority.Normal
};
backgroundTranslatorThread.Start();
}
}
Statistics.InitializeTimer();
NativeInterface.RegisterThread(context, _memory, this);
do
{
address = ExecuteSingle(context, address);
}
while (context.Running && (address & ~1UL) != 0);
NativeInterface.UnregisterThread();
if (Interlocked.Decrement(ref _threadCount) == 0)
{
_backgroundTranslatorEvent.Set();
}
}
public ulong ExecuteSingle(State.ExecutionContext context, ulong address)
{
TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode);
Statistics.StartTimer();
ulong nextAddr = func.Execute(context);
Statistics.StopTimer(address);
return nextAddr;
}
internal TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode)
{
// TODO: Investigate how we should handle code at unaligned addresses.
// Currently, those low bits are used to store special flags.
bool isCallTarget = (address & CallFlag) != 0;
address &= ~CallFlag;
if (!_funcs.TryGetValue(address, out TranslatedFunction func))
{
func = Translate(address, mode, highCq: false);
_funcs.TryAdd(address, func);
}
else if (isCallTarget && func.ShouldRejit())
{
_backgroundQueue.Enqueue(0, new RejitRequest(address, mode));
_backgroundTranslatorEvent.Set();
}
return func;
}
private TranslatedFunction Translate(ulong address, ExecutionMode mode, bool highCq)
{
ArmEmitterContext context = new ArmEmitterContext(_memory, _jumpTable, (long)address, highCq, Aarch32Mode.User);
OperandHelper.PrepareOperandPool(highCq);
OperationHelper.PrepareOperationPool(highCq);
Logger.StartPass(PassName.Decoding);
Block[] blocks = AlwaysTranslateFunctions
? Decoder.DecodeFunction (_memory, address, mode, highCq)
: Decoder.DecodeBasicBlock(_memory, address, mode);
Logger.EndPass(PassName.Decoding);
Logger.StartPass(PassName.Translation);
EmitSynchronization(context);
if (blocks[0].Address != address)
{
context.Branch(context.GetLabel(address));
}
ControlFlowGraph cfg = EmitAndGetCFG(context, blocks);
Logger.EndPass(PassName.Translation);
Logger.StartPass(PassName.RegisterUsage);
RegisterUsage.RunPass(cfg, mode, isCompleteFunction: false);
Logger.EndPass(PassName.RegisterUsage);
OperandType[] argTypes = new OperandType[] { OperandType.I64 };
CompilerOptions options = highCq
? CompilerOptions.HighCq
: CompilerOptions.None;
GuestFunction func = Compiler.Compile<GuestFunction>(cfg, argTypes, OperandType.I64, options);
OperandHelper.ResetOperandPool(highCq);
OperationHelper.ResetOperationPool(highCq);
return new TranslatedFunction(func, rejit: !highCq);
}
private static ControlFlowGraph EmitAndGetCFG(ArmEmitterContext context, Block[] blocks)
{
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
{
Block block = blocks[blkIndex];
context.CurrBlock = block;
context.MarkLabel(context.GetLabel(block.Address));
for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++)
{
OpCode opCode = block.OpCodes[opcIndex];
context.CurrOp = opCode;
bool isLastOp = opcIndex == block.OpCodes.Count - 1;
if (isLastOp && block.Branch != null && block.Branch.Address <= block.Address)
{
EmitSynchronization(context);
}
Operand lblPredicateSkip = null;
if (opCode is OpCode32 op && op.Cond < Condition.Al)
{
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert());
}
if (opCode.Instruction.Emitter != null)
{
opCode.Instruction.Emitter(context);
}
else
{
throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\".");
}
if (lblPredicateSkip != null)
{
context.MarkLabel(lblPredicateSkip);
// If this is the last op on the block, and there's no "next" block
// after this one, then we have to return right now, with the address
// of the next instruction to be executed (in the case that the condition
// is false, and the branch was not taken, as all basic blocks should end
// with some kind of branch).
if (isLastOp && block.Next == null)
{
InstEmitFlowHelper.EmitTailContinue(context, Const(opCode.Address + (ulong)opCode.OpCodeSizeInBytes));
}
}
}
}
return context.GetControlFlowGraph();
}
private static void EmitSynchronization(EmitterContext context)
{
long countOffs = NativeContext.GetCounterOffset();
Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs));
Operand count = context.Load(OperandType.I32, countAddr);
Operand lblNonZero = Label();
Operand lblExit = Label();
context.BranchIfTrue(lblNonZero, count);
Operand running = context.Call(new _Bool(NativeInterface.CheckSynchronization));
context.BranchIfTrue(lblExit, running);
context.Return(Const(0L));
context.Branch(lblExit);
context.MarkLabel(lblNonZero);
count = context.Subtract(count, Const(1));
context.Store(countAddr, count);
context.MarkLabel(lblExit);
}
}
}