1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-30 12:46:01 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/GpuContext.cs

369 lines
No EOL
13 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.GPFifo;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.Shader;
using Ryujinx.Graphics.Gpu.Synchronization;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Graphics.Gpu
{
/// <summary>
/// GPU emulation context.
/// </summary>
public sealed class GpuContext : IDisposable
{
private const int NsToTicksFractionNumerator = 384;
private const int NsToTicksFractionDenominator = 625;
/// <summary>
/// Event signaled when the host emulation context is ready to be used by the gpu context.
/// </summary>
public ManualResetEvent HostInitalized { get; }
/// <summary>
/// Host renderer.
/// </summary>
public IRenderer Renderer { get; }
/// <summary>
/// GPU General Purpose FIFO queue.
/// </summary>
public GPFifoDevice GPFifo { get; }
/// <summary>
/// GPU synchronization manager.
/// </summary>
public SynchronizationManager Synchronization { get; }
/// <summary>
/// Presentation window.
/// </summary>
public Window Window { get; }
/// <summary>
/// Internal sequence number, used to avoid needless resource data updates
/// in the middle of a command buffer before synchronizations.
/// </summary>
internal int SequenceNumber { get; private set; }
/// <summary>
/// Internal sync number, used to denote points at which host synchronization can be requested.
/// </summary>
internal ulong SyncNumber { get; private set; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint or barrier is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<Action> SyncActions { get; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<Action> SyncpointActions { get; }
/// <summary>
/// Queue with deferred actions that must run on the render thread.
/// </summary>
internal Queue<Action> DeferredActions { get; }
/// <summary>
/// Registry with physical memories that can be used with this GPU context, keyed by owner process ID.
/// </summary>
internal ConcurrentDictionary<ulong, PhysicalMemory> PhysicalMemoryRegistry { get; }
/// <summary>
/// Host hardware capabilities.
/// </summary>
internal ref Capabilities Capabilities
{
get
{
if (!_capsLoaded)
{
_caps = Renderer.GetCapabilities();
_capsLoaded = true;
}
return ref _caps;
}
}
/// <summary>
/// Event for signalling shader cache loading progress.
/// </summary>
public event Action<ShaderCacheState, int, int> ShaderCacheStateChanged;
private bool _capsLoaded;
private Capabilities _caps;
private Thread _gpuThread;
/// <summary>
/// Creates a new instance of the GPU emulation context.
/// </summary>
/// <param name="renderer">Host renderer</param>
public GpuContext(IRenderer renderer)
{
Renderer = renderer;
GPFifo = new GPFifoDevice(this);
Synchronization = new SynchronizationManager();
Window = new Window(this);
HostInitalized = new ManualResetEvent(false);
SyncActions = new List<Action>();
SyncpointActions = new List<Action>();
DeferredActions = new Queue<Action>();
PhysicalMemoryRegistry = new ConcurrentDictionary<ulong, PhysicalMemory>();
}
/// <summary>
/// Creates a new GPU channel.
/// </summary>
/// <returns>The GPU channel</returns>
public GpuChannel CreateChannel()
{
return new GpuChannel(this);
}
/// <summary>
/// Creates a new GPU memory manager.
/// </summary>
/// <param name="pid">ID of the process that owns the memory manager</param>
/// <returns>The memory manager</returns>
/// <exception cref="ArgumentException">Thrown when <paramref name="pid"/> is invalid</exception>
public MemoryManager CreateMemoryManager(ulong pid)
{
if (!PhysicalMemoryRegistry.TryGetValue(pid, out var physicalMemory))
{
throw new ArgumentException("The PID is invalid or the process was not registered", nameof(pid));
}
return new MemoryManager(physicalMemory);
}
/// <summary>
/// Registers virtual memory used by a process for GPU memory access, caching and read/write tracking.
/// </summary>
/// <param name="pid">ID of the process that owns <paramref name="cpuMemory"/></param>
/// <param name="cpuMemory">Virtual memory owned by the process</param>
/// <exception cref="ArgumentException">Thrown if <paramref name="pid"/> was already registered</exception>
public void RegisterProcess(ulong pid, Cpu.IVirtualMemoryManagerTracked cpuMemory)
{
var physicalMemory = new PhysicalMemory(this, cpuMemory);
if (!PhysicalMemoryRegistry.TryAdd(pid, physicalMemory))
{
throw new ArgumentException("The PID was already registered", nameof(pid));
}
physicalMemory.ShaderCache.ShaderCacheStateChanged += ShaderCacheStateUpdate;
}
/// <summary>
/// Unregisters a process, indicating that its memory will no longer be used, and that caches can be freed.
/// </summary>
/// <param name="pid">ID of the process</param>
public void UnregisterProcess(ulong pid)
{
if (PhysicalMemoryRegistry.TryRemove(pid, out var physicalMemory))
{
physicalMemory.ShaderCache.ShaderCacheStateChanged -= ShaderCacheStateUpdate;
physicalMemory.Dispose();
}
}
/// <summary>
/// Converts a nanoseconds timestamp value to Maxwell time ticks.
/// </summary>
/// <remarks>
/// The frequency is 614400000 Hz.
/// </remarks>
/// <param name="nanoseconds">Timestamp in nanoseconds</param>
/// <returns>Maxwell ticks</returns>
private static ulong ConvertNanosecondsToTicks(ulong nanoseconds)
{
// We need to divide first to avoid overflows.
// We fix up the result later by calculating the difference and adding
// that to the result.
ulong divided = nanoseconds / NsToTicksFractionDenominator;
ulong rounded = divided * NsToTicksFractionDenominator;
ulong errorBias = (nanoseconds - rounded) * NsToTicksFractionNumerator / NsToTicksFractionDenominator;
return divided * NsToTicksFractionNumerator + errorBias;
}
/// <summary>
/// Gets the value of the GPU timer.
/// </summary>
/// <returns>The current GPU timestamp</returns>
public ulong GetTimestamp()
{
ulong ticks = ConvertNanosecondsToTicks((ulong)PerformanceCounter.ElapsedNanoseconds);
if (GraphicsConfig.FastGpuTime)
{
// Divide by some amount to report time as if operations were performed faster than they really are.
// This can prevent some games from switching to a lower resolution because rendering is too slow.
ticks /= 256;
}
return ticks;
}
/// <summary>
/// Shader cache state update handler.
/// </summary>
/// <param name="state">Current state of the shader cache load process</param>
/// <param name="current">Number of the current shader being processed</param>
/// <param name="total">Total number of shaders to process</param>
private void ShaderCacheStateUpdate(ShaderCacheState state, int current, int total)
{
ShaderCacheStateChanged?.Invoke(state, current, total);
}
/// <summary>
/// Initialize the GPU shader cache.
/// </summary>
public void InitializeShaderCache()
{
HostInitalized.WaitOne();
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.Initialize();
}
}
/// <summary>
/// Sets the current thread as the main GPU thread.
/// </summary>
public void SetGpuThread()
{
_gpuThread = Thread.CurrentThread;
}
/// <summary>
/// Checks if the current thread is the GPU thread.
/// </summary>
/// <returns>True if the thread is the GPU thread, false otherwise</returns>
public bool IsGpuThread()
{
return _gpuThread == Thread.CurrentThread;
}
/// <summary>
/// Processes the queue of shaders that must save their binaries to the disk cache.
/// </summary>
public void ProcessShaderCacheQueue()
{
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.ProcessShaderCacheQueue();
}
}
/// <summary>
/// Advances internal sequence number.
/// This forces the update of any modified GPU resource.
/// </summary>
internal void AdvanceSequence()
{
SequenceNumber++;
}
/// <summary>
/// Registers an action to be performed the next time a syncpoint is incremented.
/// This will also ensure a host sync object is created, and <see cref="SyncNumber"/> is incremented.
/// </summary>
/// <param name="action">The action to be performed on sync object creation</param>
/// <param name="syncpointOnly">True if the sync action should only run when syncpoints are incremented</param>
public void RegisterSyncAction(Action action, bool syncpointOnly = false)
{
if (syncpointOnly)
{
SyncpointActions.Add(action);
}
else
{
SyncActions.Add(action);
}
}
/// <summary>
/// Creates a host sync object if there are any pending sync actions. The actions will then be called.
/// If no actions are present, a host sync object is not created.
/// </summary>
/// <param name="syncpoint">True if host sync is being created by a syncpoint</param>
public void CreateHostSyncIfNeeded(bool syncpoint)
{
if (SyncActions.Count > 0 || (syncpoint && SyncpointActions.Count > 0))
{
Renderer.CreateSync(SyncNumber);
SyncNumber++;
foreach (Action action in SyncActions)
{
action();
}
foreach (Action action in SyncpointActions)
{
action();
}
SyncActions.Clear();
SyncpointActions.Clear();
}
}
/// <summary>
/// Performs deferred actions.
/// This is useful for actions that must run on the render thread, such as resource disposal.
/// </summary>
internal void RunDeferredActions()
{
while (DeferredActions.TryDequeue(out Action action))
{
action();
}
}
/// <summary>
/// Disposes all GPU resources currently cached.
/// It's an error to push any GPU commands after disposal.
/// Additionally, the GPU commands FIFO must be empty for disposal,
/// and processing of all commands must have finished.
/// </summary>
public void Dispose()
{
Renderer.Dispose();
GPFifo.Dispose();
HostInitalized.Dispose();
// Has to be disposed before processing deferred actions, as it will produce some.
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.Dispose();
}
PhysicalMemoryRegistry.Clear();
RunDeferredActions();
}
}
}