1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-23 19:02:05 +00:00
Ryujinx/ChocolArm64/Instructions/SoftFloat.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

2790 lines
87 KiB
C#

using ChocolArm64.State;
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
namespace ChocolArm64.Instructions
{
static class SoftFloat
{
static SoftFloat()
{
RecipEstimateTable = BuildRecipEstimateTable();
RecipSqrtEstimateTable = BuildRecipSqrtEstimateTable();
}
internal static readonly byte[] RecipEstimateTable;
internal static readonly byte[] RecipSqrtEstimateTable;
private static byte[] BuildRecipEstimateTable()
{
byte[] tbl = new byte[256];
for (int idx = 0; idx < 256; idx++)
{
uint src = (uint)idx + 256u;
Debug.Assert(256u <= src && src < 512u);
src = (src << 1) + 1u;
uint aux = (1u << 19) / src;
uint dst = (aux + 1u) >> 1;
Debug.Assert(256u <= dst && dst < 512u);
tbl[idx] = (byte)(dst - 256u);
}
return tbl;
}
private static byte[] BuildRecipSqrtEstimateTable()
{
byte[] tbl = new byte[384];
for (int idx = 0; idx < 384; idx++)
{
uint src = (uint)idx + 128u;
Debug.Assert(128u <= src && src < 512u);
if (src < 256u)
{
src = (src << 1) + 1u;
}
else
{
src = (src >> 1) << 1;
src = (src + 1u) << 1;
}
uint aux = 512u;
while (src * (aux + 1u) * (aux + 1u) < (1u << 28))
{
aux = aux + 1u;
}
uint dst = (aux + 1u) >> 1;
Debug.Assert(256u <= dst && dst < 512u);
tbl[idx] = (byte)(dst - 256u);
}
return tbl;
}
}
static class SoftFloat16_32
{
public static float FPConvert(ushort valueBits, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat16_32.FPConvert: state.Fpcr = 0x{state.CFpcr:X8}");
double real = valueBits.FPUnpackCv(out FpType type, out bool sign, state);
float result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
if (state.GetFpcrFlag(Fpcr.Dn))
{
result = FPDefaultNaN();
}
else
{
result = FPConvertNaN(valueBits);
}
if (type == FpType.SNaN)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else if (type == FpType.Infinity)
{
result = FPInfinity(sign);
}
else if (type == FpType.Zero)
{
result = FPZero(sign);
}
else
{
result = FPRoundCv(real, state);
}
return result;
}
private static float FPDefaultNaN()
{
return -float.NaN;
}
private static float FPInfinity(bool sign)
{
return sign ? float.NegativeInfinity : float.PositiveInfinity;
}
private static float FPZero(bool sign)
{
return sign ? -0f : +0f;
}
private static float FPMaxNormal(bool sign)
{
return sign ? float.MinValue : float.MaxValue;
}
private static double FPUnpackCv(
this ushort valueBits,
out FpType type,
out bool sign,
CpuThreadState state)
{
sign = (~(uint)valueBits & 0x8000u) == 0u;
uint exp16 = ((uint)valueBits & 0x7C00u) >> 10;
uint frac16 = (uint)valueBits & 0x03FFu;
double real;
if (exp16 == 0u)
{
if (frac16 == 0u)
{
type = FpType.Zero;
real = 0d;
}
else
{
type = FpType.Nonzero; // Subnormal.
real = Math.Pow(2d, -14) * ((double)frac16 * Math.Pow(2d, -10));
}
}
else if (exp16 == 0x1Fu && !state.GetFpcrFlag(Fpcr.Ahp))
{
if (frac16 == 0u)
{
type = FpType.Infinity;
real = Math.Pow(2d, 1000);
}
else
{
type = (~frac16 & 0x0200u) == 0u ? FpType.QNaN : FpType.SNaN;
real = 0d;
}
}
else
{
type = FpType.Nonzero; // Normal.
real = Math.Pow(2d, (int)exp16 - 15) * (1d + (double)frac16 * Math.Pow(2d, -10));
}
return sign ? -real : real;
}
private static float FPRoundCv(double real, CpuThreadState state)
{
const int minimumExp = -126;
const int e = 8;
const int f = 23;
bool sign;
double mantissa;
if (real < 0d)
{
sign = true;
mantissa = -real;
}
else
{
sign = false;
mantissa = real;
}
int exponent = 0;
while (mantissa < 1d)
{
mantissa *= 2d;
exponent--;
}
while (mantissa >= 2d)
{
mantissa /= 2d;
exponent++;
}
if (state.GetFpcrFlag(Fpcr.Fz) && exponent < minimumExp)
{
state.SetFpsrFlag(Fpsr.Ufc);
return FPZero(sign);
}
uint biasedExp = (uint)Math.Max(exponent - minimumExp + 1, 0);
if (biasedExp == 0u)
{
mantissa /= Math.Pow(2d, minimumExp - exponent);
}
uint intMant = (uint)Math.Floor(mantissa * Math.Pow(2d, f));
double error = mantissa * Math.Pow(2d, f) - (double)intMant;
if (biasedExp == 0u && (error != 0d || state.GetFpcrFlag(Fpcr.Ufe)))
{
FPProcessException(FpExc.Underflow, state);
}
bool overflowToInf;
bool roundUp;
switch (state.FPRoundingMode())
{
default:
case RoundMode.ToNearest:
roundUp = (error > 0.5d || (error == 0.5d && (intMant & 1u) == 1u));
overflowToInf = true;
break;
case RoundMode.TowardsPlusInfinity:
roundUp = (error != 0d && !sign);
overflowToInf = !sign;
break;
case RoundMode.TowardsMinusInfinity:
roundUp = (error != 0d && sign);
overflowToInf = sign;
break;
case RoundMode.TowardsZero:
roundUp = false;
overflowToInf = false;
break;
}
if (roundUp)
{
intMant++;
if (intMant == 1u << f)
{
biasedExp = 1u;
}
if (intMant == 1u << (f + 1))
{
biasedExp++;
intMant >>= 1;
}
}
float result;
if (biasedExp >= (1u << e) - 1u)
{
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
FPProcessException(FpExc.Overflow, state);
error = 1d;
}
else
{
result = BitConverter.Int32BitsToSingle(
(int)((sign ? 1u : 0u) << 31 | (biasedExp & 0xFFu) << 23 | (intMant & 0x007FFFFFu)));
}
if (error != 0d)
{
FPProcessException(FpExc.Inexact, state);
}
return result;
}
private static float FPConvertNaN(ushort valueBits)
{
return BitConverter.Int32BitsToSingle(
(int)(((uint)valueBits & 0x8000u) << 16 | 0x7FC00000u | ((uint)valueBits & 0x01FFu) << 13));
}
private static void FPProcessException(FpExc exc, CpuThreadState state)
{
int enable = (int)exc + 8;
if ((state.CFpcr & (1 << enable)) != 0)
{
throw new NotImplementedException("Floating-point trap handling.");
}
else
{
state.CFpsr |= 1 << (int)exc;
}
}
}
static class SoftFloat32_16
{
public static ushort FPConvert(float value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32_16.FPConvert: state.Fpcr = 0x{state.CFpcr:X8}");
double real = value.FPUnpackCv(out FpType type, out bool sign, out uint valueBits, state);
bool altHp = state.GetFpcrFlag(Fpcr.Ahp);
ushort resultBits;
if (type == FpType.SNaN || type == FpType.QNaN)
{
if (altHp)
{
resultBits = FPZero(sign);
}
else if (state.GetFpcrFlag(Fpcr.Dn))
{
resultBits = FPDefaultNaN();
}
else
{
resultBits = FPConvertNaN(valueBits);
}
if (type == FpType.SNaN || altHp)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else if (type == FpType.Infinity)
{
if (altHp)
{
resultBits = (ushort)((sign ? 1u : 0u) << 15 | 0x7FFFu);
FPProcessException(FpExc.InvalidOp, state);
}
else
{
resultBits = FPInfinity(sign);
}
}
else if (type == FpType.Zero)
{
resultBits = FPZero(sign);
}
else
{
resultBits = FPRoundCv(real, state);
}
return resultBits;
}
private static ushort FPDefaultNaN()
{
return (ushort)0x7E00u;
}
private static ushort FPInfinity(bool sign)
{
return sign ? (ushort)0xFC00u : (ushort)0x7C00u;
}
private static ushort FPZero(bool sign)
{
return sign ? (ushort)0x8000u : (ushort)0x0000u;
}
private static ushort FPMaxNormal(bool sign)
{
return sign ? (ushort)0xFBFFu : (ushort)0x7BFFu;
}
private static double FPUnpackCv(
this float value,
out FpType type,
out bool sign,
out uint valueBits,
CpuThreadState state)
{
valueBits = (uint)BitConverter.SingleToInt32Bits(value);
sign = (~valueBits & 0x80000000u) == 0u;
uint exp32 = (valueBits & 0x7F800000u) >> 23;
uint frac32 = valueBits & 0x007FFFFFu;
double real;
if (exp32 == 0u)
{
if (frac32 == 0u || state.GetFpcrFlag(Fpcr.Fz))
{
type = FpType.Zero;
real = 0d;
if (frac32 != 0u)
{
FPProcessException(FpExc.InputDenorm, state);
}
}
else
{
type = FpType.Nonzero; // Subnormal.
real = Math.Pow(2d, -126) * ((double)frac32 * Math.Pow(2d, -23));
}
}
else if (exp32 == 0xFFu)
{
if (frac32 == 0u)
{
type = FpType.Infinity;
real = Math.Pow(2d, 1000);
}
else
{
type = (~frac32 & 0x00400000u) == 0u ? FpType.QNaN : FpType.SNaN;
real = 0d;
}
}
else
{
type = FpType.Nonzero; // Normal.
real = Math.Pow(2d, (int)exp32 - 127) * (1d + (double)frac32 * Math.Pow(2d, -23));
}
return sign ? -real : real;
}
private static ushort FPRoundCv(double real, CpuThreadState state)
{
const int minimumExp = -14;
const int e = 5;
const int f = 10;
bool sign;
double mantissa;
if (real < 0d)
{
sign = true;
mantissa = -real;
}
else
{
sign = false;
mantissa = real;
}
int exponent = 0;
while (mantissa < 1d)
{
mantissa *= 2d;
exponent--;
}
while (mantissa >= 2d)
{
mantissa /= 2d;
exponent++;
}
uint biasedExp = (uint)Math.Max(exponent - minimumExp + 1, 0);
if (biasedExp == 0u)
{
mantissa /= Math.Pow(2d, minimumExp - exponent);
}
uint intMant = (uint)Math.Floor(mantissa * Math.Pow(2d, f));
double error = mantissa * Math.Pow(2d, f) - (double)intMant;
if (biasedExp == 0u && (error != 0d || state.GetFpcrFlag(Fpcr.Ufe)))
{
FPProcessException(FpExc.Underflow, state);
}
bool overflowToInf;
bool roundUp;
switch (state.FPRoundingMode())
{
default:
case RoundMode.ToNearest:
roundUp = (error > 0.5d || (error == 0.5d && (intMant & 1u) == 1u));
overflowToInf = true;
break;
case RoundMode.TowardsPlusInfinity:
roundUp = (error != 0d && !sign);
overflowToInf = !sign;
break;
case RoundMode.TowardsMinusInfinity:
roundUp = (error != 0d && sign);
overflowToInf = sign;
break;
case RoundMode.TowardsZero:
roundUp = false;
overflowToInf = false;
break;
}
if (roundUp)
{
intMant++;
if (intMant == 1u << f)
{
biasedExp = 1u;
}
if (intMant == 1u << (f + 1))
{
biasedExp++;
intMant >>= 1;
}
}
ushort resultBits;
if (!state.GetFpcrFlag(Fpcr.Ahp))
{
if (biasedExp >= (1u << e) - 1u)
{
resultBits = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
FPProcessException(FpExc.Overflow, state);
error = 1d;
}
else
{
resultBits = (ushort)((sign ? 1u : 0u) << 15 | (biasedExp & 0x1Fu) << 10 | (intMant & 0x03FFu));
}
}
else
{
if (biasedExp >= 1u << e)
{
resultBits = (ushort)((sign ? 1u : 0u) << 15 | 0x7FFFu);
FPProcessException(FpExc.InvalidOp, state);
error = 0d;
}
else
{
resultBits = (ushort)((sign ? 1u : 0u) << 15 | (biasedExp & 0x1Fu) << 10 | (intMant & 0x03FFu));
}
}
if (error != 0d)
{
FPProcessException(FpExc.Inexact, state);
}
return resultBits;
}
private static ushort FPConvertNaN(uint valueBits)
{
return (ushort)((valueBits & 0x80000000u) >> 16 | 0x7E00u | (valueBits & 0x003FE000u) >> 13);
}
private static void FPProcessException(FpExc exc, CpuThreadState state)
{
int enable = (int)exc + 8;
if ((state.CFpcr & (1 << enable)) != 0)
{
throw new NotImplementedException("Floating-point trap handling.");
}
else
{
state.CFpsr |= 1 << (int)exc;
}
}
}
static class SoftFloat32
{
public static float FPAdd(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPAdd: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if (inf1 && inf2 && sign1 == !sign2)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((inf1 && !sign1) || (inf2 && !sign2))
{
result = FPInfinity(false);
}
else if ((inf1 && sign1) || (inf2 && sign2))
{
result = FPInfinity(true);
}
else if (zero1 && zero2 && sign1 == sign2)
{
result = FPZero(sign1);
}
else
{
result = value1 + value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static int FPCompare(float value1, float value2, bool signalNaNs, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompare: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out _, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out _, state);
int result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = 0b0011;
if (type1 == FpType.SNaN || type2 == FpType.SNaN || signalNaNs)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else
{
if (value1 == value2)
{
result = 0b0110;
}
else if (value1 < value2)
{
result = 0b1000;
}
else
{
result = 0b0010;
}
}
return result;
}
public static float FPCompareEQ(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareEQ: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
float result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
if (type1 == FpType.SNaN || type2 == FpType.SNaN)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else
{
result = ZerosOrOnes(value1 == value2);
}
return result;
}
public static float FPCompareGE(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareGE: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
float result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = ZerosOrOnes(value1 >= value2);
}
return result;
}
public static float FPCompareGT(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareGT: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
float result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = ZerosOrOnes(value1 > value2);
}
return result;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float FPCompareLE(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareLE: state.Fpcr = 0x{state.CFpcr:X8}");
return FPCompareGE(value2, value1, state);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float FPCompareLT(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareLT: state.Fpcr = 0x{state.CFpcr:X8}");
return FPCompareGT(value2, value1, state);
}
public static float FPDiv(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPDiv: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && inf2) || (zero1 && zero2))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (inf1 || zero2)
{
result = FPInfinity(sign1 ^ sign2);
if (!inf1)
{
FPProcessException(FpExc.DivideByZero, state);
}
}
else if (zero1 || inf2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 / value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static float FPMax(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMax: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
if (value1 > value2)
{
if (type1 == FpType.Infinity)
{
result = FPInfinity(sign1);
}
else if (type1 == FpType.Zero)
{
result = FPZero(sign1 && sign2);
}
else
{
result = value1;
}
}
else
{
if (type2 == FpType.Infinity)
{
result = FPInfinity(sign2);
}
else if (type2 == FpType.Zero)
{
result = FPZero(sign1 && sign2);
}
else
{
result = value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
}
return result;
}
public static float FPMaxNum(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMaxNum: state.Fpcr = 0x{state.CFpcr:X8}");
value1.FPUnpack(out FpType type1, out _, out _, state);
value2.FPUnpack(out FpType type2, out _, out _, state);
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
{
value1 = FPInfinity(true);
}
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
{
value2 = FPInfinity(true);
}
return FPMax(value1, value2, state);
}
public static float FPMin(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMin: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
if (value1 < value2)
{
if (type1 == FpType.Infinity)
{
result = FPInfinity(sign1);
}
else if (type1 == FpType.Zero)
{
result = FPZero(sign1 || sign2);
}
else
{
result = value1;
}
}
else
{
if (type2 == FpType.Infinity)
{
result = FPInfinity(sign2);
}
else if (type2 == FpType.Zero)
{
result = FPZero(sign1 || sign2);
}
else
{
result = value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
}
return result;
}
public static float FPMinNum(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMinNum: state.Fpcr = 0x{state.CFpcr:X8}");
value1.FPUnpack(out FpType type1, out _, out _, state);
value2.FPUnpack(out FpType type2, out _, out _, state);
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
{
value1 = FPInfinity(false);
}
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
{
value2 = FPInfinity(false);
}
return FPMin(value1, value2, state);
}
public static float FPMul(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMul: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else if (zero1 || zero2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 * value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static float FPMulAdd(
float valueA,
float value1,
float value2,
CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulAdd: state.Fpcr = 0x{state.CFpcr:X8}");
valueA = valueA.FPUnpack(out FpType typeA, out bool signA, out uint addend, state);
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
float result = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, out bool done, state);
if (typeA == FpType.QNaN && ((inf1 && zero2) || (zero1 && inf2)))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
if (!done)
{
bool infA = typeA == FpType.Infinity; bool zeroA = typeA == FpType.Zero;
bool signP = sign1 ^ sign2;
bool infP = inf1 || inf2;
bool zeroP = zero1 || zero2;
if ((inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((infA && !signA) || (infP && !signP))
{
result = FPInfinity(false);
}
else if ((infA && signA) || (infP && signP))
{
result = FPInfinity(true);
}
else if (zeroA && zeroP && signA == signP)
{
result = FPZero(signA);
}
else
{
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = valueA + (value1 * value2);
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float FPMulSub(
float valueA,
float value1,
float value2,
CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulSub: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
return FPMulAdd(valueA, value1, value2, state);
}
public static float FPMulX(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulX: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPTwo(sign1 ^ sign2);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else if (zero1 || zero2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 * value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static float FPRecipEstimate(float value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecipEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
float result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Infinity)
{
result = FPZero(sign);
}
else if (type == FpType.Zero)
{
result = FPInfinity(sign);
FPProcessException(FpExc.DivideByZero, state);
}
else if (MathF.Abs(value) < MathF.Pow(2f, -128))
{
bool overflowToInf;
switch (state.FPRoundingMode())
{
default:
case RoundMode.ToNearest: overflowToInf = true; break;
case RoundMode.TowardsPlusInfinity: overflowToInf = !sign; break;
case RoundMode.TowardsMinusInfinity: overflowToInf = sign; break;
case RoundMode.TowardsZero: overflowToInf = false; break;
}
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
FPProcessException(FpExc.Overflow, state);
FPProcessException(FpExc.Inexact, state);
}
else if (state.GetFpcrFlag(Fpcr.Fz) && (MathF.Abs(value) >= MathF.Pow(2f, 126)))
{
result = FPZero(sign);
state.SetFpsrFlag(Fpsr.Ufc);
}
else
{
ulong fraction = (ulong)(op & 0x007FFFFFu) << 29;
uint exp = (op & 0x7F800000u) >> 23;
if (exp == 0u)
{
if ((fraction & 0x0008000000000000ul) == 0ul)
{
fraction = (fraction & 0x0003FFFFFFFFFFFFul) << 2;
exp -= 1u;
}
else
{
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
}
}
uint scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
uint resultExp = 253u - exp;
uint estimate = (uint)SoftFloat.RecipEstimateTable[scaled - 256u] + 256u;
fraction = (ulong)(estimate & 0xFFu) << 44;
if (resultExp == 0u)
{
fraction = ((fraction & 0x000FFFFFFFFFFFFEul) | 0x0010000000000000ul) >> 1;
}
else if (resultExp + 1u == 0u)
{
fraction = ((fraction & 0x000FFFFFFFFFFFFCul) | 0x0010000000000000ul) >> 2;
resultExp = 0u;
}
result = BitConverter.Int32BitsToSingle(
(int)((sign ? 1u : 0u) << 31 | (resultExp & 0xFFu) << 23 | (uint)(fraction >> 29) & 0x007FFFFFu));
}
return result;
}
public static float FPRecipStepFused(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecipStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPTwo(false);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else
{
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = 2f + (value1 * value2);
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static float FPRecpX(float value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecpX: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
float result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else
{
uint notExp = (~op >> 23) & 0xFFu;
uint maxExp = 0xFEu;
result = BitConverter.Int32BitsToSingle(
(int)((sign ? 1u : 0u) << 31 | (notExp == 0xFFu ? maxExp : notExp) << 23));
}
return result;
}
public static float FPRSqrtEstimate(float value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRSqrtEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
float result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Zero)
{
result = FPInfinity(sign);
FPProcessException(FpExc.DivideByZero, state);
}
else if (sign)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (type == FpType.Infinity)
{
result = FPZero(false);
}
else
{
ulong fraction = (ulong)(op & 0x007FFFFFu) << 29;
uint exp = (op & 0x7F800000u) >> 23;
if (exp == 0u)
{
while ((fraction & 0x0008000000000000ul) == 0ul)
{
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
exp -= 1u;
}
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
}
uint scaled;
if ((exp & 1u) == 0u)
{
scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
}
else
{
scaled = (uint)(((fraction & 0x000FE00000000000ul) | 0x0010000000000000ul) >> 45);
}
uint resultExp = (380u - exp) >> 1;
uint estimate = (uint)SoftFloat.RecipSqrtEstimateTable[scaled - 128u] + 256u;
result = BitConverter.Int32BitsToSingle((int)((resultExp & 0xFFu) << 23 | (estimate & 0xFFu) << 15));
}
return result;
}
public static float FPRSqrtStepFused(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRSqrtStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPOnePointFive(false);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else
{
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = (3f + (value1 * value2)) / 2f;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
public static float FPSqrt(float value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPSqrt: state.Fpcr = 0x{state.CFpcr:X8}");
value = value.FPUnpack(out FpType type, out bool sign, out uint op, state);
float result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Zero)
{
result = FPZero(sign);
}
else if (type == FpType.Infinity && !sign)
{
result = FPInfinity(sign);
}
else if (sign)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = MathF.Sqrt(value);
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
return result;
}
public static float FPSub(float value1, float value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPSub: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if (inf1 && inf2 && sign1 == sign2)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((inf1 && !sign1) || (inf2 && sign2))
{
result = FPInfinity(false);
}
else if ((inf1 && sign1) || (inf2 && !sign2))
{
result = FPInfinity(true);
}
else if (zero1 && zero2 && sign1 == !sign2)
{
result = FPZero(sign1);
}
else
{
result = value1 - value2;
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0f);
}
}
}
return result;
}
private static float FPDefaultNaN()
{
return -float.NaN;
}
private static float FPInfinity(bool sign)
{
return sign ? float.NegativeInfinity : float.PositiveInfinity;
}
private static float FPZero(bool sign)
{
return sign ? -0f : +0f;
}
private static float FPMaxNormal(bool sign)
{
return sign ? float.MinValue : float.MaxValue;
}
private static float FPTwo(bool sign)
{
return sign ? -2f : +2f;
}
private static float FPOnePointFive(bool sign)
{
return sign ? -1.5f : +1.5f;
}
private static float FPNeg(this float value)
{
return -value;
}
private static float ZerosOrOnes(bool ones)
{
return BitConverter.Int32BitsToSingle(ones ? -1 : 0);
}
private static float FPUnpack(
this float value,
out FpType type,
out bool sign,
out uint valueBits,
CpuThreadState state)
{
valueBits = (uint)BitConverter.SingleToInt32Bits(value);
sign = (~valueBits & 0x80000000u) == 0u;
if ((valueBits & 0x7F800000u) == 0u)
{
if ((valueBits & 0x007FFFFFu) == 0u || state.GetFpcrFlag(Fpcr.Fz))
{
type = FpType.Zero;
value = FPZero(sign);
if ((valueBits & 0x007FFFFFu) != 0u)
{
FPProcessException(FpExc.InputDenorm, state);
}
}
else
{
type = FpType.Nonzero;
}
}
else if ((~valueBits & 0x7F800000u) == 0u)
{
if ((valueBits & 0x007FFFFFu) == 0u)
{
type = FpType.Infinity;
}
else
{
type = (~valueBits & 0x00400000u) == 0u ? FpType.QNaN : FpType.SNaN;
value = FPZero(sign);
}
}
else
{
type = FpType.Nonzero;
}
return value;
}
private static float FPProcessNaNs(
FpType type1,
FpType type2,
uint op1,
uint op2,
out bool done,
CpuThreadState state)
{
done = true;
if (type1 == FpType.SNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.SNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type1 == FpType.QNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.QNaN)
{
return FPProcessNaN(type2, op2, state);
}
done = false;
return FPZero(false);
}
private static float FPProcessNaNs3(
FpType type1,
FpType type2,
FpType type3,
uint op1,
uint op2,
uint op3,
out bool done,
CpuThreadState state)
{
done = true;
if (type1 == FpType.SNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.SNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type3 == FpType.SNaN)
{
return FPProcessNaN(type3, op3, state);
}
else if (type1 == FpType.QNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.QNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type3 == FpType.QNaN)
{
return FPProcessNaN(type3, op3, state);
}
done = false;
return FPZero(false);
}
private static float FPProcessNaN(FpType type, uint op, CpuThreadState state)
{
if (type == FpType.SNaN)
{
op |= 1u << 22;
FPProcessException(FpExc.InvalidOp, state);
}
if (state.GetFpcrFlag(Fpcr.Dn))
{
return FPDefaultNaN();
}
return BitConverter.Int32BitsToSingle((int)op);
}
private static void FPProcessException(FpExc exc, CpuThreadState state)
{
int enable = (int)exc + 8;
if ((state.CFpcr & (1 << enable)) != 0)
{
throw new NotImplementedException("Floating-point trap handling.");
}
else
{
state.CFpsr |= 1 << (int)exc;
}
}
}
static class SoftFloat64
{
public static double FPAdd(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPAdd: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if (inf1 && inf2 && sign1 == !sign2)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((inf1 && !sign1) || (inf2 && !sign2))
{
result = FPInfinity(false);
}
else if ((inf1 && sign1) || (inf2 && sign2))
{
result = FPInfinity(true);
}
else if (zero1 && zero2 && sign1 == sign2)
{
result = FPZero(sign1);
}
else
{
result = value1 + value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static int FPCompare(double value1, double value2, bool signalNaNs, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompare: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out _, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out _, state);
int result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = 0b0011;
if (type1 == FpType.SNaN || type2 == FpType.SNaN || signalNaNs)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else
{
if (value1 == value2)
{
result = 0b0110;
}
else if (value1 < value2)
{
result = 0b1000;
}
else
{
result = 0b0010;
}
}
return result;
}
public static double FPCompareEQ(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareEQ: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
double result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
if (type1 == FpType.SNaN || type2 == FpType.SNaN)
{
FPProcessException(FpExc.InvalidOp, state);
}
}
else
{
result = ZerosOrOnes(value1 == value2);
}
return result;
}
public static double FPCompareGE(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareGE: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
double result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = ZerosOrOnes(value1 >= value2);
}
return result;
}
public static double FPCompareGT(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareGT: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
double result;
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
{
result = ZerosOrOnes(false);
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = ZerosOrOnes(value1 > value2);
}
return result;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double FPCompareLE(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareLE: state.Fpcr = 0x{state.CFpcr:X8}");
return FPCompareGE(value2, value1, state);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double FPCompareLT(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareLT: state.Fpcr = 0x{state.CFpcr:X8}");
return FPCompareGT(value2, value1, state);
}
public static double FPDiv(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPDiv: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && inf2) || (zero1 && zero2))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (inf1 || zero2)
{
result = FPInfinity(sign1 ^ sign2);
if (!inf1)
{
FPProcessException(FpExc.DivideByZero, state);
}
}
else if (zero1 || inf2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 / value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static double FPMax(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMax: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
if (value1 > value2)
{
if (type1 == FpType.Infinity)
{
result = FPInfinity(sign1);
}
else if (type1 == FpType.Zero)
{
result = FPZero(sign1 && sign2);
}
else
{
result = value1;
}
}
else
{
if (type2 == FpType.Infinity)
{
result = FPInfinity(sign2);
}
else if (type2 == FpType.Zero)
{
result = FPZero(sign1 && sign2);
}
else
{
result = value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
}
return result;
}
public static double FPMaxNum(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMaxNum: state.Fpcr = 0x{state.CFpcr:X8}");
value1.FPUnpack(out FpType type1, out _, out _, state);
value2.FPUnpack(out FpType type2, out _, out _, state);
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
{
value1 = FPInfinity(true);
}
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
{
value2 = FPInfinity(true);
}
return FPMax(value1, value2, state);
}
public static double FPMin(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMin: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
if (value1 < value2)
{
if (type1 == FpType.Infinity)
{
result = FPInfinity(sign1);
}
else if (type1 == FpType.Zero)
{
result = FPZero(sign1 || sign2);
}
else
{
result = value1;
}
}
else
{
if (type2 == FpType.Infinity)
{
result = FPInfinity(sign2);
}
else if (type2 == FpType.Zero)
{
result = FPZero(sign1 || sign2);
}
else
{
result = value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
}
return result;
}
public static double FPMinNum(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMinNum: state.Fpcr = 0x{state.CFpcr:X8}");
value1.FPUnpack(out FpType type1, out _, out _, state);
value2.FPUnpack(out FpType type2, out _, out _, state);
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
{
value1 = FPInfinity(false);
}
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
{
value2 = FPInfinity(false);
}
return FPMin(value1, value2, state);
}
public static double FPMul(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMul: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else if (zero1 || zero2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 * value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static double FPMulAdd(
double valueA,
double value1,
double value2,
CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulAdd: state.Fpcr = 0x{state.CFpcr:X8}");
valueA = valueA.FPUnpack(out FpType typeA, out bool signA, out ulong addend, state);
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
double result = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, out bool done, state);
if (typeA == FpType.QNaN && ((inf1 && zero2) || (zero1 && inf2)))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
if (!done)
{
bool infA = typeA == FpType.Infinity; bool zeroA = typeA == FpType.Zero;
bool signP = sign1 ^ sign2;
bool infP = inf1 || inf2;
bool zeroP = zero1 || zero2;
if ((inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP))
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((infA && !signA) || (infP && !signP))
{
result = FPInfinity(false);
}
else if ((infA && signA) || (infP && signP))
{
result = FPInfinity(true);
}
else if (zeroA && zeroP && signA == signP)
{
result = FPZero(signA);
}
else
{
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = valueA + (value1 * value2);
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double FPMulSub(
double valueA,
double value1,
double value2,
CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulSub: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
return FPMulAdd(valueA, value1, value2, state);
}
public static double FPMulX(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulX: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPTwo(sign1 ^ sign2);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else if (zero1 || zero2)
{
result = FPZero(sign1 ^ sign2);
}
else
{
result = value1 * value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static double FPRecipEstimate(double value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecipEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
double result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Infinity)
{
result = FPZero(sign);
}
else if (type == FpType.Zero)
{
result = FPInfinity(sign);
FPProcessException(FpExc.DivideByZero, state);
}
else if (Math.Abs(value) < Math.Pow(2d, -1024))
{
bool overflowToInf;
switch (state.FPRoundingMode())
{
default:
case RoundMode.ToNearest: overflowToInf = true; break;
case RoundMode.TowardsPlusInfinity: overflowToInf = !sign; break;
case RoundMode.TowardsMinusInfinity: overflowToInf = sign; break;
case RoundMode.TowardsZero: overflowToInf = false; break;
}
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
FPProcessException(FpExc.Overflow, state);
FPProcessException(FpExc.Inexact, state);
}
else if (state.GetFpcrFlag(Fpcr.Fz) && (Math.Abs(value) >= Math.Pow(2d, 1022)))
{
result = FPZero(sign);
state.SetFpsrFlag(Fpsr.Ufc);
}
else
{
ulong fraction = op & 0x000FFFFFFFFFFFFFul;
uint exp = (uint)((op & 0x7FF0000000000000ul) >> 52);
if (exp == 0u)
{
if ((fraction & 0x0008000000000000ul) == 0ul)
{
fraction = (fraction & 0x0003FFFFFFFFFFFFul) << 2;
exp -= 1u;
}
else
{
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
}
}
uint scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
uint resultExp = 2045u - exp;
uint estimate = (uint)SoftFloat.RecipEstimateTable[scaled - 256u] + 256u;
fraction = (ulong)(estimate & 0xFFu) << 44;
if (resultExp == 0u)
{
fraction = ((fraction & 0x000FFFFFFFFFFFFEul) | 0x0010000000000000ul) >> 1;
}
else if (resultExp + 1u == 0u)
{
fraction = ((fraction & 0x000FFFFFFFFFFFFCul) | 0x0010000000000000ul) >> 2;
resultExp = 0u;
}
result = BitConverter.Int64BitsToDouble(
(long)((sign ? 1ul : 0ul) << 63 | (resultExp & 0x7FFul) << 52 | (fraction & 0x000FFFFFFFFFFFFFul)));
}
return result;
}
public static double FPRecipStepFused(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecipStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPTwo(false);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else
{
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = 2d + (value1 * value2);
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static double FPRecpX(double value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecpX: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
double result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else
{
ulong notExp = (~op >> 52) & 0x7FFul;
ulong maxExp = 0x7FEul;
result = BitConverter.Int64BitsToDouble(
(long)((sign ? 1ul : 0ul) << 63 | (notExp == 0x7FFul ? maxExp : notExp) << 52));
}
return result;
}
public static double FPRSqrtEstimate(double value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRSqrtEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
double result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Zero)
{
result = FPInfinity(sign);
FPProcessException(FpExc.DivideByZero, state);
}
else if (sign)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if (type == FpType.Infinity)
{
result = FPZero(false);
}
else
{
ulong fraction = op & 0x000FFFFFFFFFFFFFul;
uint exp = (uint)((op & 0x7FF0000000000000ul) >> 52);
if (exp == 0u)
{
while ((fraction & 0x0008000000000000ul) == 0ul)
{
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
exp -= 1u;
}
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
}
uint scaled;
if ((exp & 1u) == 0u)
{
scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
}
else
{
scaled = (uint)(((fraction & 0x000FE00000000000ul) | 0x0010000000000000ul) >> 45);
}
uint resultExp = (3068u - exp) >> 1;
uint estimate = (uint)SoftFloat.RecipSqrtEstimateTable[scaled - 128u] + 256u;
result = BitConverter.Int64BitsToDouble((long)((resultExp & 0x7FFul) << 52 | (estimate & 0xFFul) << 44));
}
return result;
}
public static double FPRSqrtStepFused(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRSqrtStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPNeg();
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if ((inf1 && zero2) || (zero1 && inf2))
{
result = FPOnePointFive(false);
}
else if (inf1 || inf2)
{
result = FPInfinity(sign1 ^ sign2);
}
else
{
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
// https://github.com/dotnet/corefx/issues/31903
result = (3d + (value1 * value2)) / 2d;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
public static double FPSqrt(double value, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPSqrt: state.Fpcr = 0x{state.CFpcr:X8}");
value = value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
double result;
if (type == FpType.SNaN || type == FpType.QNaN)
{
result = FPProcessNaN(type, op, state);
}
else if (type == FpType.Zero)
{
result = FPZero(sign);
}
else if (type == FpType.Infinity && !sign)
{
result = FPInfinity(sign);
}
else if (sign)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else
{
result = Math.Sqrt(value);
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
return result;
}
public static double FPSub(double value1, double value2, CpuThreadState state)
{
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPSub: state.Fpcr = 0x{state.CFpcr:X8}");
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
if (!done)
{
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
if (inf1 && inf2 && sign1 == sign2)
{
result = FPDefaultNaN();
FPProcessException(FpExc.InvalidOp, state);
}
else if ((inf1 && !sign1) || (inf2 && sign2))
{
result = FPInfinity(false);
}
else if ((inf1 && sign1) || (inf2 && !sign2))
{
result = FPInfinity(true);
}
else if (zero1 && zero2 && sign1 == !sign2)
{
result = FPZero(sign1);
}
else
{
result = value1 - value2;
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
{
state.SetFpsrFlag(Fpsr.Ufc);
result = FPZero(result < 0d);
}
}
}
return result;
}
private static double FPDefaultNaN()
{
return -double.NaN;
}
private static double FPInfinity(bool sign)
{
return sign ? double.NegativeInfinity : double.PositiveInfinity;
}
private static double FPZero(bool sign)
{
return sign ? -0d : +0d;
}
private static double FPMaxNormal(bool sign)
{
return sign ? double.MinValue : double.MaxValue;
}
private static double FPTwo(bool sign)
{
return sign ? -2d : +2d;
}
private static double FPOnePointFive(bool sign)
{
return sign ? -1.5d : +1.5d;
}
private static double FPNeg(this double value)
{
return -value;
}
private static double ZerosOrOnes(bool ones)
{
return BitConverter.Int64BitsToDouble(ones ? -1L : 0L);
}
private static double FPUnpack(
this double value,
out FpType type,
out bool sign,
out ulong valueBits,
CpuThreadState state)
{
valueBits = (ulong)BitConverter.DoubleToInt64Bits(value);
sign = (~valueBits & 0x8000000000000000ul) == 0ul;
if ((valueBits & 0x7FF0000000000000ul) == 0ul)
{
if ((valueBits & 0x000FFFFFFFFFFFFFul) == 0ul || state.GetFpcrFlag(Fpcr.Fz))
{
type = FpType.Zero;
value = FPZero(sign);
if ((valueBits & 0x000FFFFFFFFFFFFFul) != 0ul)
{
FPProcessException(FpExc.InputDenorm, state);
}
}
else
{
type = FpType.Nonzero;
}
}
else if ((~valueBits & 0x7FF0000000000000ul) == 0ul)
{
if ((valueBits & 0x000FFFFFFFFFFFFFul) == 0ul)
{
type = FpType.Infinity;
}
else
{
type = (~valueBits & 0x0008000000000000ul) == 0ul ? FpType.QNaN : FpType.SNaN;
value = FPZero(sign);
}
}
else
{
type = FpType.Nonzero;
}
return value;
}
private static double FPProcessNaNs(
FpType type1,
FpType type2,
ulong op1,
ulong op2,
out bool done,
CpuThreadState state)
{
done = true;
if (type1 == FpType.SNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.SNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type1 == FpType.QNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.QNaN)
{
return FPProcessNaN(type2, op2, state);
}
done = false;
return FPZero(false);
}
private static double FPProcessNaNs3(
FpType type1,
FpType type2,
FpType type3,
ulong op1,
ulong op2,
ulong op3,
out bool done,
CpuThreadState state)
{
done = true;
if (type1 == FpType.SNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.SNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type3 == FpType.SNaN)
{
return FPProcessNaN(type3, op3, state);
}
else if (type1 == FpType.QNaN)
{
return FPProcessNaN(type1, op1, state);
}
else if (type2 == FpType.QNaN)
{
return FPProcessNaN(type2, op2, state);
}
else if (type3 == FpType.QNaN)
{
return FPProcessNaN(type3, op3, state);
}
done = false;
return FPZero(false);
}
private static double FPProcessNaN(FpType type, ulong op, CpuThreadState state)
{
if (type == FpType.SNaN)
{
op |= 1ul << 51;
FPProcessException(FpExc.InvalidOp, state);
}
if (state.GetFpcrFlag(Fpcr.Dn))
{
return FPDefaultNaN();
}
return BitConverter.Int64BitsToDouble((long)op);
}
private static void FPProcessException(FpExc exc, CpuThreadState state)
{
int enable = (int)exc + 8;
if ((state.CFpcr & (1 << enable)) != 0)
{
throw new NotImplementedException("Floating-point trap handling.");
}
else
{
state.CFpsr |= 1 << (int)exc;
}
}
}
}