1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-19 04:02:02 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/Engine/GPFifo/GPFifoDevice.cs
riperiperi f3cc2e5703
GPU: Access non-prefetch command buffers directly (#3882)
* GPU: Access non-prefetch command buffers directly

Saves allocating new arrays for them constantly - they can be quite small so it can be very wasteful. About 0.4% of GPU thread in SMO, but was a bit higher in S/V when I checked.

Assumes that non-prefetch command buffers won't be randomly clobbered before they finish executing, though that's probably a safe bet.

* Small change while I'm here

* Address feedback
2022-11-24 01:56:55 +00:00

262 lines
9.3 KiB
C#

using Ryujinx.Graphics.Gpu.Memory;
using System;
using System.Collections.Concurrent;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
/// <summary>
/// Represents a GPU General Purpose FIFO device.
/// </summary>
public sealed class GPFifoDevice : IDisposable
{
/// <summary>
/// Indicates if the command buffer has pre-fetch enabled.
/// </summary>
private enum CommandBufferType
{
Prefetch,
NoPrefetch
}
/// <summary>
/// Command buffer data.
/// </summary>
private struct CommandBuffer
{
/// <summary>
/// Processor used to process the command buffer. Contains channel state.
/// </summary>
public GPFifoProcessor Processor;
/// <summary>
/// The type of the command buffer.
/// </summary>
public CommandBufferType Type;
/// <summary>
/// Fetched data.
/// </summary>
public int[] Words;
/// <summary>
/// The GPFIFO entry address (used in <see cref="CommandBufferType.NoPrefetch"/> mode).
/// </summary>
public ulong EntryAddress;
/// <summary>
/// The count of entries inside this GPFIFO entry.
/// </summary>
public uint EntryCount;
/// <summary>
/// Get the entries for the command buffer from memory.
/// </summary>
/// <param name="memoryManager">The memory manager used to fetch the data</param>
/// <param name="flush">If true, flushes potential GPU written data before reading the command buffer</param>
/// <returns>The fetched data</returns>
private ReadOnlySpan<int> GetWords(MemoryManager memoryManager, bool flush)
{
return MemoryMarshal.Cast<byte, int>(memoryManager.GetSpan(EntryAddress, (int)EntryCount * 4, flush));
}
/// <summary>
/// Prefetch the command buffer.
/// </summary>
/// <param name="memoryManager">The memory manager used to fetch the data</param>
public void Prefetch(MemoryManager memoryManager)
{
Words = GetWords(memoryManager, true).ToArray();
}
/// <summary>
/// Fetch the command buffer.
/// </summary>
/// <param name="memoryManager">The memory manager used to fetch the data</param>
/// <param name="flush">If true, flushes potential GPU written data before reading the command buffer</param>
/// <returns>The command buffer words</returns>
public ReadOnlySpan<int> Fetch(MemoryManager memoryManager, bool flush)
{
return Words ?? GetWords(memoryManager, flush);
}
}
private readonly ConcurrentQueue<CommandBuffer> _commandBufferQueue;
private CommandBuffer _currentCommandBuffer;
private GPFifoProcessor _prevChannelProcessor;
private readonly bool _ibEnable;
private readonly GpuContext _context;
private readonly AutoResetEvent _event;
private bool _interrupt;
private int _flushSkips;
/// <summary>
/// Creates a new instance of the GPU General Purpose FIFO device.
/// </summary>
/// <param name="context">GPU context that the GPFIFO belongs to</param>
internal GPFifoDevice(GpuContext context)
{
_commandBufferQueue = new ConcurrentQueue<CommandBuffer>();
_ibEnable = true;
_context = context;
_event = new AutoResetEvent(false);
}
/// <summary>
/// Signal the FIFO that there are new entries to process.
/// </summary>
public void SignalNewEntries()
{
_event.Set();
}
/// <summary>
/// Push a GPFIFO entry in the form of a prefetched command buffer.
/// It is intended to be used by nvservices to handle special cases.
/// </summary>
/// <param name="processor">Processor used to process <paramref name="commandBuffer"/></param>
/// <param name="commandBuffer">The command buffer containing the prefetched commands</param>
internal void PushHostCommandBuffer(GPFifoProcessor processor, int[] commandBuffer)
{
_commandBufferQueue.Enqueue(new CommandBuffer
{
Processor = processor,
Type = CommandBufferType.Prefetch,
Words = commandBuffer,
EntryAddress = ulong.MaxValue,
EntryCount = (uint)commandBuffer.Length
});
}
/// <summary>
/// Create a CommandBuffer from a GPFIFO entry.
/// </summary>
/// <param name="processor">Processor used to process the command buffer pointed to by <paramref name="entry"/></param>
/// <param name="entry">The GPFIFO entry</param>
/// <returns>A new CommandBuffer based on the GPFIFO entry</returns>
private static CommandBuffer CreateCommandBuffer(GPFifoProcessor processor, GPEntry entry)
{
CommandBufferType type = CommandBufferType.Prefetch;
if (entry.Entry1Sync == Entry1Sync.Wait)
{
type = CommandBufferType.NoPrefetch;
}
ulong startAddress = ((ulong)entry.Entry0Get << 2) | ((ulong)entry.Entry1GetHi << 32);
return new CommandBuffer
{
Processor = processor,
Type = type,
Words = null,
EntryAddress = startAddress,
EntryCount = (uint)entry.Entry1Length
};
}
/// <summary>
/// Pushes GPFIFO entries.
/// </summary>
/// <param name="processor">Processor used to process the command buffers pointed to by <paramref name="entries"/></param>
/// <param name="entries">GPFIFO entries</param>
internal void PushEntries(GPFifoProcessor processor, ReadOnlySpan<ulong> entries)
{
bool beforeBarrier = true;
for (int index = 0; index < entries.Length; index++)
{
ulong entry = entries[index];
CommandBuffer commandBuffer = CreateCommandBuffer(processor, Unsafe.As<ulong, GPEntry>(ref entry));
if (beforeBarrier && commandBuffer.Type == CommandBufferType.Prefetch)
{
commandBuffer.Prefetch(processor.MemoryManager);
}
if (commandBuffer.Type == CommandBufferType.NoPrefetch)
{
beforeBarrier = false;
}
_commandBufferQueue.Enqueue(commandBuffer);
}
}
/// <summary>
/// Waits until commands are pushed to the FIFO.
/// </summary>
/// <returns>True if commands were received, false if wait timed out</returns>
public bool WaitForCommands()
{
return !_commandBufferQueue.IsEmpty || (_event.WaitOne(8) && !_commandBufferQueue.IsEmpty);
}
/// <summary>
/// Processes commands pushed to the FIFO.
/// </summary>
public void DispatchCalls()
{
// Use this opportunity to also dispose any pending channels that were closed.
_context.RunDeferredActions();
// Process command buffers.
while (_ibEnable && !_interrupt && _commandBufferQueue.TryDequeue(out CommandBuffer entry))
{
bool flushCommandBuffer = true;
if (_flushSkips != 0)
{
_flushSkips--;
flushCommandBuffer = false;
}
_currentCommandBuffer = entry;
ReadOnlySpan<int> words = entry.Fetch(entry.Processor.MemoryManager, flushCommandBuffer);
// If we are changing the current channel,
// we need to force all the host state to be updated.
if (_prevChannelProcessor != entry.Processor)
{
_prevChannelProcessor = entry.Processor;
entry.Processor.ForceAllDirty();
}
entry.Processor.Process(entry.EntryAddress, words);
}
_interrupt = false;
}
/// <summary>
/// Sets the number of flushes that should be skipped for subsequent command buffers.
/// </summary>
/// <remarks>
/// This can improve performance when command buffer data only needs to be consumed by the GPU.
/// </remarks>
/// <param name="count">The amount of flushes that should be skipped</param>
internal void SetFlushSkips(int count)
{
_flushSkips = count;
}
/// <summary>
/// Interrupts command processing. This will break out of the DispatchCalls loop.
/// </summary>
public void Interrupt()
{
_interrupt = true;
}
/// <summary>
/// Disposes of resources used for GPFifo command processing.
/// </summary>
public void Dispose() => _event.Dispose();
}
}