1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-30 19:26:03 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs
gdkchan efb135b74c
Clear CPU side data on GPU buffer clears (#4125)
* Clear CPU side data on GPU buffer clears

* Implement tracked fill operation that can signal other resource types except buffer

* Fix tests, add missing XML doc

* PR feedback
2023-02-16 18:28:49 -03:00

413 lines
No EOL
17 KiB
C#

using Ryujinx.Cpu;
using Ryujinx.Cpu.Tracking;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.Shader;
using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Memory
{
/// <summary>
/// Represents physical memory, accessible from the GPU.
/// This is actually working CPU virtual addresses, of memory mapped on the application process.
/// </summary>
class PhysicalMemory : IDisposable
{
private readonly GpuContext _context;
private IVirtualMemoryManagerTracked _cpuMemory;
private int _referenceCount;
/// <summary>
/// Indicates whenever the memory manager supports 4KB pages.
/// </summary>
public bool Supports4KBPages => _cpuMemory.Supports4KBPages;
/// <summary>
/// In-memory shader cache.
/// </summary>
public ShaderCache ShaderCache { get; }
/// <summary>
/// GPU buffer manager.
/// </summary>
public BufferCache BufferCache { get; }
/// <summary>
/// GPU texture manager.
/// </summary>
public TextureCache TextureCache { get; }
/// <summary>
/// Creates a new instance of the physical memory.
/// </summary>
/// <param name="context">GPU context that the physical memory belongs to</param>
/// <param name="cpuMemory">CPU memory manager of the application process</param>
public PhysicalMemory(GpuContext context, IVirtualMemoryManagerTracked cpuMemory)
{
_context = context;
_cpuMemory = cpuMemory;
ShaderCache = new ShaderCache(context);
BufferCache = new BufferCache(context, this);
TextureCache = new TextureCache(context, this);
if (cpuMemory is IRefCounted rc)
{
rc.IncrementReferenceCount();
}
_referenceCount = 1;
}
/// <summary>
/// Increments the memory reference count.
/// </summary>
public void IncrementReferenceCount()
{
Interlocked.Increment(ref _referenceCount);
}
/// <summary>
/// Decrements the memory reference count.
/// </summary>
public void DecrementReferenceCount()
{
if (Interlocked.Decrement(ref _referenceCount) == 0 && _cpuMemory is IRefCounted rc)
{
rc.DecrementReferenceCount();
}
}
/// <summary>
/// Gets a span of data from the application process.
/// </summary>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes to be range</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>A read only span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpan(ulong address, int size, bool tracked = false)
{
return _cpuMemory.GetSpan(address, size, tracked);
}
/// <summary>
/// Gets a span of data from the application process.
/// </summary>
/// <param name="range">Ranges of physical memory where the data is located</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>A read only span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpan(MultiRange range, bool tracked = false)
{
if (range.Count == 1)
{
var singleRange = range.GetSubRange(0);
if (singleRange.Address != MemoryManager.PteUnmapped)
{
return _cpuMemory.GetSpan(singleRange.Address, (int)singleRange.Size, tracked);
}
}
Span<byte> data = new byte[range.GetSize()];
int offset = 0;
for (int i = 0; i < range.Count; i++)
{
var currentRange = range.GetSubRange(i);
int size = (int)currentRange.Size;
if (currentRange.Address != MemoryManager.PteUnmapped)
{
_cpuMemory.GetSpan(currentRange.Address, size, tracked).CopyTo(data.Slice(offset, size));
}
offset += size;
}
return data;
}
/// <summary>
/// Gets a writable region from the application process.
/// </summary>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes to be range</param>
/// <param name="tracked">True if write tracking is triggered on the span</param>
/// <returns>A writable region with the data at the specified memory location</returns>
public WritableRegion GetWritableRegion(ulong address, int size, bool tracked = false)
{
return _cpuMemory.GetWritableRegion(address, size, tracked);
}
/// <summary>
/// Gets a writable region from GPU mapped memory.
/// </summary>
/// <param name="range">Range</param>
/// <param name="tracked">True if write tracking is triggered on the span</param>
/// <returns>A writable region with the data at the specified memory location</returns>
public WritableRegion GetWritableRegion(MultiRange range, bool tracked = false)
{
if (range.Count == 1)
{
MemoryRange subrange = range.GetSubRange(0);
return GetWritableRegion(subrange.Address, (int)subrange.Size, tracked);
}
else
{
Memory<byte> memory = new byte[range.GetSize()];
int offset = 0;
for (int i = 0; i < range.Count; i++)
{
var currentRange = range.GetSubRange(i);
int size = (int)currentRange.Size;
if (currentRange.Address != MemoryManager.PteUnmapped)
{
GetSpan(currentRange.Address, size).CopyTo(memory.Span.Slice(offset, size));
}
offset += size;
}
return new WritableRegion(new MultiRangeWritableBlock(range, this), 0, memory, tracked);
}
}
/// <summary>
/// Reads data from the application process.
/// </summary>
/// <typeparam name="T">Type of the structure</typeparam>
/// <param name="address">Address to read from</param>
/// <returns>The data at the specified memory location</returns>
public T Read<T>(ulong address) where T : unmanaged
{
return _cpuMemory.Read<T>(address);
}
/// <summary>
/// Reads data from the application process, with write tracking.
/// </summary>
/// <typeparam name="T">Type of the structure</typeparam>
/// <param name="address">Address to read from</param>
/// <returns>The data at the specified memory location</returns>
public T ReadTracked<T>(ulong address) where T : unmanaged
{
return _cpuMemory.ReadTracked<T>(address);
}
/// <summary>
/// Writes data to the application process, triggering a precise memory tracking event.
/// </summary>
/// <param name="address">Address to write into</param>
/// <param name="data">Data to be written</param>
public void WriteTrackedResource(ulong address, ReadOnlySpan<byte> data)
{
_cpuMemory.SignalMemoryTracking(address, (ulong)data.Length, true, precise: true);
_cpuMemory.WriteUntracked(address, data);
}
/// <summary>
/// Writes data to the application process.
/// </summary>
/// <param name="address">Address to write into</param>
/// <param name="data">Data to be written</param>
public void Write(ulong address, ReadOnlySpan<byte> data)
{
_cpuMemory.Write(address, data);
}
/// <summary>
/// Writes data to the application process.
/// </summary>
/// <param name="range">Ranges of physical memory where the data is located</param>
/// <param name="data">Data to be written</param>
public void Write(MultiRange range, ReadOnlySpan<byte> data)
{
WriteImpl(range, data, _cpuMemory.Write);
}
/// <summary>
/// Writes data to the application process, without any tracking.
/// </summary>
/// <param name="address">Address to write into</param>
/// <param name="data">Data to be written</param>
public void WriteUntracked(ulong address, ReadOnlySpan<byte> data)
{
_cpuMemory.WriteUntracked(address, data);
}
/// <summary>
/// Writes data to the application process, without any tracking.
/// </summary>
/// <param name="range">Ranges of physical memory where the data is located</param>
/// <param name="data">Data to be written</param>
public void WriteUntracked(MultiRange range, ReadOnlySpan<byte> data)
{
WriteImpl(range, data, _cpuMemory.WriteUntracked);
}
/// <summary>
/// Writes data to the application process, returning false if the data was not changed.
/// This triggers read memory tracking, as a redundancy check would be useless if the data is not up to date.
/// </summary>
/// <remarks>The memory manager can return that memory has changed when it hasn't to avoid expensive data copies.</remarks>
/// <param name="address">Address to write into</param>
/// <param name="data">Data to be written</param>
/// <returns>True if the data was changed, false otherwise</returns>
public bool WriteWithRedundancyCheck(ulong address, ReadOnlySpan<byte> data)
{
return _cpuMemory.WriteWithRedundancyCheck(address, data);
}
private delegate void WriteCallback(ulong address, ReadOnlySpan<byte> data);
/// <summary>
/// Writes data to the application process, using the supplied callback method.
/// </summary>
/// <param name="range">Ranges of physical memory where the data is located</param>
/// <param name="data">Data to be written</param>
/// <param name="writeCallback">Callback method that will perform the write</param>
private static void WriteImpl(MultiRange range, ReadOnlySpan<byte> data, WriteCallback writeCallback)
{
if (range.Count == 1)
{
var singleRange = range.GetSubRange(0);
if (singleRange.Address != MemoryManager.PteUnmapped)
{
writeCallback(singleRange.Address, data);
}
}
else
{
int offset = 0;
for (int i = 0; i < range.Count; i++)
{
var currentRange = range.GetSubRange(i);
int size = (int)currentRange.Size;
if (currentRange.Address != MemoryManager.PteUnmapped)
{
writeCallback(currentRange.Address, data.Slice(offset, size));
}
offset += size;
}
}
}
/// <summary>
/// Fills the specified memory region with a 32-bit integer value.
/// </summary>
/// <param name="address">CPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <param name="value">Value to fill the region with</param>
/// <param name="kind">Kind of the resource being filled, which will not be signalled as CPU modified</param>
public void FillTrackedResource(ulong address, ulong size, uint value, ResourceKind kind)
{
_cpuMemory.SignalMemoryTracking(address, size, write: true, precise: true, (int)kind);
using WritableRegion region = _cpuMemory.GetWritableRegion(address, (int)size);
MemoryMarshal.Cast<byte, uint>(region.Memory.Span).Fill(value);
}
/// <summary>
/// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with.
/// </summary>
/// <param name="address">CPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <param name="kind">Kind of the resource being tracked</param>
/// <returns>The memory tracking handle</returns>
public CpuRegionHandle BeginTracking(ulong address, ulong size, ResourceKind kind)
{
return _cpuMemory.BeginTracking(address, size, (int)kind);
}
/// <summary>
/// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with.
/// </summary>
/// <param name="range">Ranges of physical memory where the data is located</param>
/// <param name="kind">Kind of the resource being tracked</param>
/// <returns>The memory tracking handle</returns>
public GpuRegionHandle BeginTracking(MultiRange range, ResourceKind kind)
{
var cpuRegionHandles = new CpuRegionHandle[range.Count];
int count = 0;
for (int i = 0; i < range.Count; i++)
{
var currentRange = range.GetSubRange(i);
if (currentRange.Address != MemoryManager.PteUnmapped)
{
cpuRegionHandles[count++] = _cpuMemory.BeginTracking(currentRange.Address, currentRange.Size, (int)kind);
}
}
if (count != range.Count)
{
Array.Resize(ref cpuRegionHandles, count);
}
return new GpuRegionHandle(cpuRegionHandles);
}
/// <summary>
/// Obtains a memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with.
/// </summary>
/// <param name="address">CPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <param name="kind">Kind of the resource being tracked</param>
/// <param name="handles">Handles to inherit state from or reuse</param>
/// <param name="granularity">Desired granularity of write tracking</param>
/// <returns>The memory tracking handle</returns>
public CpuMultiRegionHandle BeginGranularTracking(ulong address, ulong size, ResourceKind kind, IEnumerable<IRegionHandle> handles = null, ulong granularity = 4096)
{
return _cpuMemory.BeginGranularTracking(address, size, handles, granularity, (int)kind);
}
/// <summary>
/// Obtains a smart memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with.
/// </summary>
/// <param name="address">CPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <param name="kind">Kind of the resource being tracked</param>
/// <param name="granularity">Desired granularity of write tracking</param>
/// <returns>The memory tracking handle</returns>
public CpuSmartMultiRegionHandle BeginSmartGranularTracking(ulong address, ulong size, ResourceKind kind, ulong granularity = 4096)
{
return _cpuMemory.BeginSmartGranularTracking(address, size, granularity, (int)kind);
}
/// <summary>
/// Checks if a given memory page is mapped.
/// </summary>
/// <param name="address">CPU virtual address of the page</param>
/// <returns>True if mapped, false otherwise</returns>
public bool IsMapped(ulong address)
{
return _cpuMemory.IsMapped(address);
}
/// <summary>
/// Release our reference to the CPU memory manager.
/// </summary>
public void Dispose()
{
_context.DeferredActions.Enqueue(Destroy);
}
/// <summary>
/// Performs disposal of the host GPU caches with resources mapped on this physical memory.
/// This must only be called from the render thread.
/// </summary>
private void Destroy()
{
ShaderCache.Dispose();
BufferCache.Dispose();
TextureCache.Dispose();
DecrementReferenceCount();
}
}
}