1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-24 10:52:05 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/KAddressArbiter.cs
gdkchan 00579927e4
Better process implementation (#491)
* Initial implementation of KProcess

* Some improvements to the memory manager, implement back guest stack trace printing

* Better GetInfo implementation, improve checking in some places with information from process capabilities

* Allow the cpu to read/write from the correct memory locations for accesses crossing a page boundary

* Change long -> ulong for address/size on memory related methods to avoid unnecessary casts

* Attempt at implementing ldr:ro with new KProcess

* Allow BSS with size 0 on ldr:ro

* Add checking for memory block slab heap usage, return errors if full, exit gracefully

* Use KMemoryBlockSize const from KMemoryManager

* Allow all methods to read from non-contiguous locations

* Fix for TransactParcelAuto

* Address PR feedback, additionally fix some small issues related to the KIP loader and implement SVCs GetProcessId, GetProcessList, GetSystemInfo, CreatePort and ManageNamedPort

* Fix wrong check for source pages count from page list on MapPhysicalMemory

* Fix some issues with UnloadNro on ldr:ro
2018-11-28 20:18:09 -02:00

650 lines
19 KiB
C#

using System.Collections.Generic;
using System.Linq;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
class KAddressArbiter
{
private const int HasListenersMask = 0x40000000;
private Horizon System;
public List<KThread> CondVarThreads;
public List<KThread> ArbiterThreads;
public KAddressArbiter(Horizon System)
{
this.System = System;
CondVarThreads = new List<KThread>();
ArbiterThreads = new List<KThread>();
}
public long ArbitrateLock(int OwnerHandle, long MutexAddress, int RequesterHandle)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = 0;
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(System, MutexAddress, out int MutexValue))
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);;
}
if (MutexValue != (OwnerHandle | HasListenersMask))
{
System.CriticalSection.Leave();
return 0;
}
KThread MutexOwner = CurrentProcess.HandleTable.GetObject<KThread>(OwnerHandle);
if (MutexOwner == null)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
CurrentThread.MutexAddress = MutexAddress;
CurrentThread.ThreadHandleForUserMutex = RequesterHandle;
MutexOwner.AddMutexWaiter(CurrentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
System.CriticalSection.Leave();
System.CriticalSection.Enter();
if (CurrentThread.MutexOwner != null)
{
CurrentThread.MutexOwner.RemoveMutexWaiter(CurrentThread);
}
System.CriticalSection.Leave();
return (uint)CurrentThread.ObjSyncResult;
}
public long ArbitrateUnlock(long MutexAddress)
{
System.CriticalSection.Enter();
KThread CurrentThread = System.Scheduler.GetCurrentThread();
(long Result, KThread NewOwnerThread) = MutexUnlock(CurrentThread, MutexAddress);
if (Result != 0 && NewOwnerThread != null)
{
NewOwnerThread.SignaledObj = null;
NewOwnerThread.ObjSyncResult = (int)Result;
}
System.CriticalSection.Leave();
return Result;
}
public long WaitProcessWideKeyAtomic(
long MutexAddress,
long CondVarAddress,
int ThreadHandle,
long Timeout)
{
System.CriticalSection.Enter();
KThread CurrentThread = System.Scheduler.GetCurrentThread();
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
(long Result, _) = MutexUnlock(CurrentThread, MutexAddress);
if (Result != 0)
{
System.CriticalSection.Leave();
return Result;
}
CurrentThread.MutexAddress = MutexAddress;
CurrentThread.ThreadHandleForUserMutex = ThreadHandle;
CurrentThread.CondVarAddress = CondVarAddress;
CondVarThreads.Add(CurrentThread);
if (Timeout != 0)
{
CurrentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
}
}
System.CriticalSection.Leave();
if (Timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
}
System.CriticalSection.Enter();
if (CurrentThread.MutexOwner != null)
{
CurrentThread.MutexOwner.RemoveMutexWaiter(CurrentThread);
}
CondVarThreads.Remove(CurrentThread);
System.CriticalSection.Leave();
return (uint)CurrentThread.ObjSyncResult;
}
private (long, KThread) MutexUnlock(KThread CurrentThread, long MutexAddress)
{
KThread NewOwnerThread = CurrentThread.RelinquishMutex(MutexAddress, out int Count);
int MutexValue = 0;
if (NewOwnerThread != null)
{
MutexValue = NewOwnerThread.ThreadHandleForUserMutex;
if (Count >= 2)
{
MutexValue |= HasListenersMask;
}
NewOwnerThread.SignaledObj = null;
NewOwnerThread.ObjSyncResult = 0;
NewOwnerThread.ReleaseAndResume();
}
long Result = 0;
if (!KernelTransfer.KernelToUserInt32(System, MutexAddress, MutexValue))
{
Result = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
return (Result, NewOwnerThread);
}
public void SignalProcessWideKey(long Address, int Count)
{
Queue<KThread> SignaledThreads = new Queue<KThread>();
System.CriticalSection.Enter();
IOrderedEnumerable<KThread> SortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority);
foreach (KThread Thread in SortedThreads.Where(x => x.CondVarAddress == Address))
{
TryAcquireMutex(Thread);
SignaledThreads.Enqueue(Thread);
//If the count is <= 0, we should signal all threads waiting.
if (Count >= 1 && --Count == 0)
{
break;
}
}
while (SignaledThreads.TryDequeue(out KThread Thread))
{
CondVarThreads.Remove(Thread);
}
System.CriticalSection.Leave();
}
private KThread TryAcquireMutex(KThread Requester)
{
long Address = Requester.MutexAddress;
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int MutexValue))
{
//Invalid address.
CurrentProcess.CpuMemory.ClearExclusive(0);
Requester.SignaledObj = null;
Requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return null;
}
while (true)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
{
if (MutexValue != 0)
{
//Update value to indicate there is a mutex waiter now.
CurrentProcess.CpuMemory.WriteInt32(Address, MutexValue | HasListenersMask);
}
else
{
//No thread owning the mutex, assign to requesting thread.
CurrentProcess.CpuMemory.WriteInt32(Address, Requester.ThreadHandleForUserMutex);
}
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
MutexValue = CurrentProcess.CpuMemory.ReadInt32(Address);
}
if (MutexValue == 0)
{
//We now own the mutex.
Requester.SignaledObj = null;
Requester.ObjSyncResult = 0;
Requester.ReleaseAndResume();
return null;
}
MutexValue &= ~HasListenersMask;
KThread MutexOwner = CurrentProcess.HandleTable.GetObject<KThread>(MutexValue);
if (MutexOwner != null)
{
//Mutex already belongs to another thread, wait for it.
MutexOwner.AddMutexWaiter(Requester);
}
else
{
//Invalid mutex owner.
Requester.SignaledObj = null;
Requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
Requester.ReleaseAndResume();
}
return MutexOwner;
}
public long WaitForAddressIfEqual(long Address, int Value, long Timeout)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (CurrentValue == Value)
{
if (Timeout == 0)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
CurrentThread.MutexAddress = Address;
CurrentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, CurrentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
}
System.CriticalSection.Leave();
if (Timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
}
System.CriticalSection.Enter();
if (CurrentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(CurrentThread);
CurrentThread.WaitingInArbitration = false;
}
System.CriticalSection.Leave();
return CurrentThread.ObjSyncResult;
}
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
public long WaitForAddressIfLessThan(long Address, int Value, bool ShouldDecrement, long Timeout)
{
KThread CurrentThread = System.Scheduler.GetCurrentThread();
System.CriticalSection.Enter();
if (CurrentThread.ShallBeTerminated ||
CurrentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
CurrentThread.SignaledObj = null;
CurrentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
//If ShouldDecrement is true, do atomic decrement of the value at Address.
CurrentProcess.CpuMemory.SetExclusive(0, Address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (ShouldDecrement)
{
while (CurrentValue < Value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue - 1);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
}
}
CurrentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue < Value)
{
if (Timeout == 0)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
CurrentThread.MutexAddress = Address;
CurrentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, CurrentThread);
CurrentThread.Reschedule(ThreadSchedState.Paused);
if (Timeout > 0)
{
System.TimeManager.ScheduleFutureInvocation(CurrentThread, Timeout);
}
System.CriticalSection.Leave();
if (Timeout > 0)
{
System.TimeManager.UnscheduleFutureInvocation(CurrentThread);
}
System.CriticalSection.Enter();
if (CurrentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(CurrentThread);
CurrentThread.WaitingInArbitration = false;
}
System.CriticalSection.Leave();
return CurrentThread.ObjSyncResult;
}
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
private void InsertSortedByPriority(List<KThread> Threads, KThread Thread)
{
int NextIndex = -1;
for (int Index = 0; Index < Threads.Count; Index++)
{
if (Threads[Index].DynamicPriority > Thread.DynamicPriority)
{
NextIndex = Index;
break;
}
}
if (NextIndex != -1)
{
Threads.Insert(NextIndex, Thread);
}
else
{
Threads.Add(Thread);
}
}
public long Signal(long Address, int Count)
{
System.CriticalSection.Enter();
WakeArbiterThreads(Address, Count);
System.CriticalSection.Leave();
return 0;
}
public long SignalAndIncrementIfEqual(long Address, int Value, int Count)
{
System.CriticalSection.Enter();
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (CurrentValue == Value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue + 1);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
}
CurrentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue != Value)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(Address, Count);
System.CriticalSection.Leave();
return 0;
}
public long SignalAndModifyIfEqual(long Address, int Value, int Count)
{
System.CriticalSection.Enter();
int Offset;
//The value is decremented if the number of threads waiting is less
//or equal to the Count of threads to be signaled, or Count is zero
//or negative. It is incremented if there are no threads waiting.
int WaitingCount = 0;
foreach (KThread Thread in ArbiterThreads.Where(x => x.MutexAddress == Address))
{
if (++WaitingCount > Count)
{
break;
}
}
if (WaitingCount > 0)
{
Offset = WaitingCount <= Count || Count <= 0 ? -1 : 0;
}
else
{
Offset = 1;
}
KProcess CurrentProcess = System.Scheduler.GetCurrentProcess();
CurrentProcess.CpuMemory.SetExclusive(0, Address);
if (!KernelTransfer.UserToKernelInt32(System, Address, out int CurrentValue))
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (CurrentValue == Value)
{
if (CurrentProcess.CpuMemory.TestExclusive(0, Address))
{
CurrentProcess.CpuMemory.WriteInt32(Address, CurrentValue + Offset);
CurrentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
CurrentProcess.CpuMemory.SetExclusive(0, Address);
CurrentValue = CurrentProcess.CpuMemory.ReadInt32(Address);
}
CurrentProcess.CpuMemory.ClearExclusive(0);
if (CurrentValue != Value)
{
System.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(Address, Count);
System.CriticalSection.Leave();
return 0;
}
private void WakeArbiterThreads(long Address, int Count)
{
Queue<KThread> SignaledThreads = new Queue<KThread>();
foreach (KThread Thread in ArbiterThreads.Where(x => x.MutexAddress == Address))
{
SignaledThreads.Enqueue(Thread);
//If the count is <= 0, we should signal all threads waiting.
if (Count >= 1 && --Count == 0)
{
break;
}
}
while (SignaledThreads.TryDequeue(out KThread Thread))
{
Thread.SignaledObj = null;
Thread.ObjSyncResult = 0;
Thread.ReleaseAndResume();
Thread.WaitingInArbitration = false;
ArbiterThreads.Remove(Thread);
}
}
}
}