1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-19 05:02:02 +00:00
Ryujinx/Ryujinx.Graphics.Nvdec.Vp9/DecodeFrame.cs
2022-08-17 09:05:15 +02:00

1357 lines
49 KiB
C#

using Ryujinx.Common.Memory;
using Ryujinx.Graphics.Nvdec.Vp9.Common;
using Ryujinx.Graphics.Nvdec.Vp9.Dsp;
using Ryujinx.Graphics.Nvdec.Vp9.Types;
using Ryujinx.Graphics.Video;
using System;
using System.Buffers.Binary;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading.Tasks;
using Mv = Ryujinx.Graphics.Nvdec.Vp9.Types.Mv;
namespace Ryujinx.Graphics.Nvdec.Vp9
{
static class DecodeFrame
{
private static bool ReadIsValid(ArrayPtr<byte> start, int len)
{
return len != 0 && len <= start.Length;
}
private static void InverseTransformBlockInter(ref MacroBlockD xd, int plane, TxSize txSize, Span<byte> dst, int stride, int eob)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
ArrayPtr<int> dqcoeff = pd.DqCoeff;
Debug.Assert(eob > 0);
if (xd.CurBuf.HighBd)
{
Span<ushort> dst16 = MemoryMarshal.Cast<byte, ushort>(dst);
if (xd.Lossless)
{
Idct.HighbdIwht4x4Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
}
else
{
switch (txSize)
{
case TxSize.Tx4x4:
Idct.HighbdIdct4x4Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx8x8:
Idct.HighbdIdct8x8Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx16x16:
Idct.HighbdIdct16x16Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx32x32:
Idct.HighbdIdct32x32Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
default: Debug.Assert(false, "Invalid transform size"); break;
}
}
}
else
{
if (xd.Lossless)
{
Idct.Iwht4x4Add(dqcoeff.AsSpan(), dst, stride, eob);
}
else
{
switch (txSize)
{
case TxSize.Tx4x4: Idct.Idct4x4Add(dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx8x8: Idct.Idct8x8Add(dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx16x16: Idct.Idct16x16Add(dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx32x32: Idct.Idct32x32Add(dqcoeff.AsSpan(), dst, stride, eob); break;
default: Debug.Assert(false, "Invalid transform size"); return;
}
}
}
if (eob == 1)
{
dqcoeff.AsSpan()[0] = 0;
}
else
{
if (txSize <= TxSize.Tx16x16 && eob <= 10)
{
dqcoeff.AsSpan().Slice(0, 4 * (4 << (int)txSize)).Fill(0);
}
else if (txSize == TxSize.Tx32x32 && eob <= 34)
{
dqcoeff.AsSpan().Slice(0, 256).Fill(0);
}
else
{
dqcoeff.AsSpan().Slice(0, 16 << ((int)txSize << 1)).Fill(0);
}
}
}
private static void InverseTransformBlockIntra(
ref MacroBlockD xd,
int plane,
TxType txType,
TxSize txSize,
Span<byte> dst,
int stride,
int eob)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
ArrayPtr<int> dqcoeff = pd.DqCoeff;
Debug.Assert(eob > 0);
if (xd.CurBuf.HighBd)
{
Span<ushort> dst16 = MemoryMarshal.Cast<byte, ushort>(dst);
if (xd.Lossless)
{
Idct.HighbdIwht4x4Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
}
else
{
switch (txSize)
{
case TxSize.Tx4x4:
Idct.HighbdIht4x4Add(txType, dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx8x8:
Idct.HighbdIht8x8Add(txType, dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx16x16:
Idct.HighbdIht16x16Add(txType, dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
case TxSize.Tx32x32:
Idct.HighbdIdct32x32Add(dqcoeff.AsSpan(), dst16, stride, eob, xd.Bd);
break;
default: Debug.Assert(false, "Invalid transform size"); break;
}
}
}
else
{
if (xd.Lossless)
{
Idct.Iwht4x4Add(dqcoeff.AsSpan(), dst, stride, eob);
}
else
{
switch (txSize)
{
case TxSize.Tx4x4: Idct.Iht4x4Add(txType, dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx8x8: Idct.Iht8x8Add(txType, dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx16x16: Idct.Iht16x16Add(txType, dqcoeff.AsSpan(), dst, stride, eob); break;
case TxSize.Tx32x32: Idct.Idct32x32Add(dqcoeff.AsSpan(), dst, stride, eob); break;
default: Debug.Assert(false, "Invalid transform size"); return;
}
}
}
if (eob == 1)
{
dqcoeff.AsSpan()[0] = 0;
}
else
{
if (txType == TxType.DctDct && txSize <= TxSize.Tx16x16 && eob <= 10)
{
dqcoeff.AsSpan().Slice(0, 4 * (4 << (int)txSize)).Fill(0);
}
else if (txSize == TxSize.Tx32x32 && eob <= 34)
{
dqcoeff.AsSpan().Slice(0, 256).Fill(0);
}
else
{
dqcoeff.AsSpan().Slice(0, 16 << ((int)txSize << 1)).Fill(0);
}
}
}
private static unsafe void PredictAndReconstructIntraBlock(
ref TileWorkerData twd,
ref ModeInfo mi,
int plane,
int row,
int col,
TxSize txSize)
{
ref MacroBlockD xd = ref twd.Xd;
ref MacroBlockDPlane pd = ref xd.Plane[plane];
PredictionMode mode = (plane == 0) ? mi.Mode : mi.UvMode;
int dstOffset = 4 * row * pd.Dst.Stride + 4 * col;
byte* dst = &pd.Dst.Buf.ToPointer()[dstOffset];
Span<byte> dstSpan = pd.Dst.Buf.AsSpan().Slice(dstOffset);
if (mi.SbType < BlockSize.Block8x8)
{
if (plane == 0)
{
mode = xd.Mi[0].Value.Bmi[(row << 1) + col].Mode;
}
}
ReconIntra.PredictIntraBlock(ref xd, pd.N4Wl, txSize, mode, dst, pd.Dst.Stride, dst, pd.Dst.Stride, col, row, plane);
if (mi.Skip == 0)
{
TxType txType =
(plane != 0 || xd.Lossless) ? TxType.DctDct : ReconIntra.IntraModeToTxTypeLookup[(int)mode];
var sc = (plane != 0 || xd.Lossless)
? Luts.Vp9DefaultScanOrders[(int)txSize]
: Luts.Vp9ScanOrders[(int)txSize][(int)txType];
int eob = Detokenize.DecodeBlockTokens(ref twd, plane, sc, col, row, txSize, mi.SegmentId);
if (eob > 0)
{
InverseTransformBlockIntra(ref xd, plane, txType, txSize, dstSpan, pd.Dst.Stride, eob);
}
}
}
private static int ReconstructInterBlock(
ref TileWorkerData twd,
ref ModeInfo mi,
int plane,
int row,
int col,
TxSize txSize)
{
ref MacroBlockD xd = ref twd.Xd;
ref MacroBlockDPlane pd = ref xd.Plane[plane];
var sc = Luts.Vp9DefaultScanOrders[(int)txSize];
int eob = Detokenize.DecodeBlockTokens(ref twd, plane, sc, col, row, txSize, mi.SegmentId);
Span<byte> dst = pd.Dst.Buf.AsSpan().Slice(4 * row * pd.Dst.Stride + 4 * col);
if (eob > 0)
{
InverseTransformBlockInter(ref xd, plane, txSize, dst, pd.Dst.Stride, eob);
}
return eob;
}
private static unsafe void BuildMcBorder(
byte* src,
int srcStride,
byte* dst,
int dstStride,
int x,
int y,
int bW,
int bH,
int w,
int h)
{
// Get a pointer to the start of the real data for this row.
byte* refRow = src - x - y * srcStride;
if (y >= h)
{
refRow += (h - 1) * srcStride;
}
else if (y > 0)
{
refRow += y * srcStride;
}
do
{
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > bW)
{
left = bW;
}
if (x + bW > w)
{
right = x + bW - w;
}
if (right > bW)
{
right = bW;
}
copy = bW - left - right;
if (left != 0)
{
MemoryUtil.Fill(dst, refRow[0], left);
}
if (copy != 0)
{
MemoryUtil.Copy(dst + left, refRow + x + left, copy);
}
if (right != 0)
{
MemoryUtil.Fill(dst + left + copy, refRow[w - 1], right);
}
dst += dstStride;
++y;
if (y > 0 && y < h)
{
refRow += srcStride;
}
} while (--bH != 0);
}
private static unsafe void HighBuildMcBorder(
byte* src8,
int srcStride,
ushort* dst,
int dstStride,
int x,
int y,
int bW,
int bH,
int w,
int h)
{
// Get a pointer to the start of the real data for this row.
ushort* src = (ushort*)src8;
ushort* refRow = src - x - y * srcStride;
if (y >= h)
{
refRow += (h - 1) * srcStride;
}
else if (y > 0)
{
refRow += y * srcStride;
}
do
{
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > bW)
{
left = bW;
}
if (x + bW > w)
{
right = x + bW - w;
}
if (right > bW)
{
right = bW;
}
copy = bW - left - right;
if (left != 0)
{
MemoryUtil.Fill(dst, refRow[0], left);
}
if (copy != 0)
{
MemoryUtil.Copy(dst + left, refRow + x + left, copy);
}
if (right != 0)
{
MemoryUtil.Fill(dst + left + copy, refRow[w - 1], right);
}
dst += dstStride;
++y;
if (y > 0 && y < h)
{
refRow += srcStride;
}
} while (--bH != 0);
}
[SkipLocalsInit]
private static unsafe void ExtendAndPredict(
byte* bufPtr1,
int preBufStride,
int x0,
int y0,
int bW,
int bH,
int frameWidth,
int frameHeight,
int borderOffset,
byte* dst,
int dstBufStride,
int subpelX,
int subpelY,
Array8<short>[] kernel,
ref ScaleFactors sf,
ref MacroBlockD xd,
int w,
int h,
int refr,
int xs,
int ys)
{
ushort* mcBufHigh = stackalloc ushort[80 * 2 * 80 * 2];
if (xd.CurBuf.HighBd)
{
HighBuildMcBorder(bufPtr1, preBufStride, mcBufHigh, bW, x0, y0, bW, bH, frameWidth, frameHeight);
ReconInter.HighbdInterPredictor(
mcBufHigh + borderOffset,
bW,
(ushort*)dst,
dstBufStride,
subpelX,
subpelY,
ref sf,
w,
h,
refr,
kernel,
xs,
ys,
xd.Bd);
}
else
{
BuildMcBorder(bufPtr1, preBufStride, (byte*)mcBufHigh, bW, x0, y0, bW, bH, frameWidth, frameHeight);
ReconInter.InterPredictor(
(byte*)mcBufHigh + borderOffset,
bW,
dst,
dstBufStride,
subpelX,
subpelY,
ref sf,
w,
h,
refr,
kernel,
xs,
ys);
}
}
private static unsafe void DecBuildInterPredictors(
ref MacroBlockD xd,
int plane,
int bw,
int bh,
int x,
int y,
int w,
int h,
int miX,
int miY,
Array8<short>[] kernel,
ref ScaleFactors sf,
ref Buf2D preBuf,
ref Buf2D dstBuf,
ref Mv mv,
ref Surface refFrameBuf,
bool isScaled,
int refr)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
byte* dst = dstBuf.Buf.ToPointer() + dstBuf.Stride * y + x;
Mv32 scaledMv;
int xs, ys, x0, y0, x0_16, y0_16, frameWidth, frameHeight, bufStride, subpelX, subpelY;
byte* refFrame;
byte* bufPtr;
// Get reference frame pointer, width and height.
if (plane == 0)
{
frameWidth = refFrameBuf.Width;
frameHeight = refFrameBuf.Height;
refFrame = refFrameBuf.YBuffer.ToPointer();
}
else
{
frameWidth = refFrameBuf.UvWidth;
frameHeight = refFrameBuf.UvHeight;
refFrame = plane == 1 ? refFrameBuf.UBuffer.ToPointer() : refFrameBuf.VBuffer.ToPointer();
}
if (isScaled)
{
Mv mvQ4 = ReconInter.ClampMvToUmvBorderSb(ref xd, ref mv, bw, bh, pd.SubsamplingX, pd.SubsamplingY);
// Co-ordinate of containing block to pixel precision.
int xStart = (-xd.MbToLeftEdge >> (3 + pd.SubsamplingX));
int yStart = (-xd.MbToTopEdge >> (3 + pd.SubsamplingY));
// Co-ordinate of the block to 1/16th pixel precision.
x0_16 = (xStart + x) << Filter.SubpelBits;
y0_16 = (yStart + y) << Filter.SubpelBits;
// Co-ordinate of current block in reference frame
// to 1/16th pixel precision.
x0_16 = sf.ScaleValueX(x0_16);
y0_16 = sf.ScaleValueY(y0_16);
// Map the top left corner of the block into the reference frame.
x0 = sf.ScaleValueX(xStart + x);
y0 = sf.ScaleValueY(yStart + y);
// Scale the MV and incorporate the sub-pixel offset of the block
// in the reference frame.
scaledMv = sf.ScaleMv(ref mvQ4, miX + x, miY + y);
xs = sf.XStepQ4;
ys = sf.YStepQ4;
}
else
{
// Co-ordinate of containing block to pixel precision.
x0 = (-xd.MbToLeftEdge >> (3 + pd.SubsamplingX)) + x;
y0 = (-xd.MbToTopEdge >> (3 + pd.SubsamplingY)) + y;
// Co-ordinate of the block to 1/16th pixel precision.
x0_16 = x0 << Filter.SubpelBits;
y0_16 = y0 << Filter.SubpelBits;
scaledMv.Row = mv.Row * (1 << (1 - pd.SubsamplingY));
scaledMv.Col = mv.Col * (1 << (1 - pd.SubsamplingX));
xs = ys = 16;
}
subpelX = scaledMv.Col & Filter.SubpelMask;
subpelY = scaledMv.Row & Filter.SubpelMask;
// Calculate the top left corner of the best matching block in the
// reference frame.
x0 += scaledMv.Col >> Filter.SubpelBits;
y0 += scaledMv.Row >> Filter.SubpelBits;
x0_16 += scaledMv.Col;
y0_16 += scaledMv.Row;
// Get reference block pointer.
bufPtr = refFrame + y0 * preBuf.Stride + x0;
bufStride = preBuf.Stride;
// Do border extension if there is motion or the
// width/height is not a multiple of 8 pixels.
if (isScaled || scaledMv.Col != 0 || scaledMv.Row != 0 || (frameWidth & 0x7) != 0 || (frameHeight & 0x7) != 0)
{
int y1 = ((y0_16 + (h - 1) * ys) >> Filter.SubpelBits) + 1;
// Get reference block bottom right horizontal coordinate.
int x1 = ((x0_16 + (w - 1) * xs) >> Filter.SubpelBits) + 1;
int xPad = 0, yPad = 0;
if (subpelX != 0 || (sf.XStepQ4 != Filter.SubpelShifts))
{
x0 -= Constants.Vp9InterpExtend - 1;
x1 += Constants.Vp9InterpExtend;
xPad = 1;
}
if (subpelY != 0 || (sf.YStepQ4 != Filter.SubpelShifts))
{
y0 -= Constants.Vp9InterpExtend - 1;
y1 += Constants.Vp9InterpExtend;
yPad = 1;
}
// Skip border extension if block is inside the frame.
if (x0 < 0 || x0 > frameWidth - 1 || x1 < 0 || x1 > frameWidth - 1 ||
y0 < 0 || y0 > frameHeight - 1 || y1 < 0 || y1 > frameHeight - 1)
{
// Extend the border.
byte* bufPtr1 = refFrame + y0 * bufStride + x0;
int bW = x1 - x0 + 1;
int bH = y1 - y0 + 1;
int borderOffset = yPad * 3 * bW + xPad * 3;
ExtendAndPredict(
bufPtr1,
bufStride,
x0,
y0,
bW,
bH,
frameWidth,
frameHeight,
borderOffset,
dst,
dstBuf.Stride,
subpelX,
subpelY,
kernel,
ref sf,
ref xd,
w,
h,
refr,
xs,
ys);
return;
}
}
if (xd.CurBuf.HighBd)
{
ReconInter.HighbdInterPredictor(
(ushort*)bufPtr,
bufStride,
(ushort*)dst,
dstBuf.Stride,
subpelX,
subpelY,
ref sf,
w,
h,
refr,
kernel,
xs,
ys,
xd.Bd);
}
else
{
ReconInter.InterPredictor(
bufPtr,
bufStride,
dst,
dstBuf.Stride,
subpelX,
subpelY,
ref sf,
w,
h,
refr,
kernel,
xs,
ys);
}
}
private static void DecBuildInterPredictorsSb(ref Vp9Common cm, ref MacroBlockD xd, int miRow, int miCol)
{
int plane;
int miX = miCol * Constants.MiSize;
int miY = miRow * Constants.MiSize;
ref ModeInfo mi = ref xd.Mi[0].Value;
Array8<short>[] kernel = Luts.Vp9FilterKernels[mi.InterpFilter];
BlockSize sbType = mi.SbType;
int isCompound = mi.HasSecondRef() ? 1 : 0;
int refr;
bool isScaled;
for (refr = 0; refr < 1 + isCompound; ++refr)
{
int frame = mi.RefFrame[refr];
ref RefBuffer refBuf = ref cm.FrameRefs[frame - Constants.LastFrame];
ref ScaleFactors sf = ref refBuf.Sf;
ref Surface refFrameBuf = ref refBuf.Buf;
if (!sf.IsValidScale())
{
xd.ErrorInfo.Value.InternalError(CodecErr.CodecUnsupBitstream, "Reference frame has invalid dimensions");
}
isScaled = sf.IsScaled();
ReconInter.SetupPrePlanes(ref xd, refr, ref refFrameBuf, miRow, miCol, isScaled ? new Ptr<ScaleFactors>(ref sf) : Ptr<ScaleFactors>.Null);
xd.BlockRefs[refr] = new Ptr<RefBuffer>(ref refBuf);
if (sbType < BlockSize.Block8x8)
{
for (plane = 0; plane < Constants.MaxMbPlane; ++plane)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
ref Buf2D dstBuf = ref pd.Dst;
int num4x4W = pd.N4W;
int num4x4H = pd.N4H;
int n4Wx4 = 4 * num4x4W;
int n4Hx4 = 4 * num4x4H;
ref Buf2D preBuf = ref pd.Pre[refr];
int i = 0, x, y;
for (y = 0; y < num4x4H; ++y)
{
for (x = 0; x < num4x4W; ++x)
{
Mv mv = ReconInter.AverageSplitMvs(ref pd, ref mi, refr, i++);
DecBuildInterPredictors(
ref xd,
plane,
n4Wx4,
n4Hx4,
4 * x,
4 * y,
4,
4,
miX,
miY,
kernel,
ref sf,
ref preBuf,
ref dstBuf,
ref mv,
ref refFrameBuf,
isScaled,
refr);
}
}
}
}
else
{
Mv mv = mi.Mv[refr];
for (plane = 0; plane < Constants.MaxMbPlane; ++plane)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
ref Buf2D dstBuf = ref pd.Dst;
int num4x4W = pd.N4W;
int num4x4H = pd.N4H;
int n4Wx4 = 4 * num4x4W;
int n4Hx4 = 4 * num4x4H;
ref Buf2D preBuf = ref pd.Pre[refr];
DecBuildInterPredictors(
ref xd,
plane,
n4Wx4,
n4Hx4,
0,
0,
n4Wx4,
n4Hx4,
miX,
miY,
kernel,
ref sf,
ref preBuf,
ref dstBuf,
ref mv,
ref refFrameBuf,
isScaled,
refr);
}
}
}
}
private static unsafe void DecResetSkipContext(ref MacroBlockD xd)
{
int i;
for (i = 0; i < Constants.MaxMbPlane; i++)
{
ref MacroBlockDPlane pd = ref xd.Plane[i];
MemoryUtil.Fill(pd.AboveContext.ToPointer(), (sbyte)0, pd.N4W);
MemoryUtil.Fill(pd.LeftContext.ToPointer(), (sbyte)0, pd.N4H);
}
}
private static void SetPlaneN4(ref MacroBlockD xd, int bw, int bh, int bwl, int bhl)
{
int i;
for (i = 0; i < Constants.MaxMbPlane; i++)
{
xd.Plane[i].N4W = (ushort)((bw << 1) >> xd.Plane[i].SubsamplingX);
xd.Plane[i].N4H = (ushort)((bh << 1) >> xd.Plane[i].SubsamplingY);
xd.Plane[i].N4Wl = (byte)(bwl - xd.Plane[i].SubsamplingX);
xd.Plane[i].N4Hl = (byte)(bhl - xd.Plane[i].SubsamplingY);
}
}
private static ref ModeInfo SetOffsets(
ref Vp9Common cm,
ref MacroBlockD xd,
BlockSize bsize,
int miRow,
int miCol,
int bw,
int bh,
int xMis,
int yMis,
int bwl,
int bhl)
{
int offset = miRow * cm.MiStride + miCol;
int x, y;
ref TileInfo tile = ref xd.Tile;
xd.Mi = cm.MiGridVisible.Slice(offset);
xd.Mi[0] = new Ptr<ModeInfo>(ref cm.Mi[offset]);
xd.Mi[0].Value.SbType = bsize;
for (y = 0; y < yMis; ++y)
{
for (x = y == 0 ? 1 : 0; x < xMis; ++x)
{
xd.Mi[y * cm.MiStride + x] = xd.Mi[0];
}
}
SetPlaneN4(ref xd, bw, bh, bwl, bhl);
xd.SetSkipContext(miRow, miCol);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
xd.SetMiRowCol(ref tile, miRow, bh, miCol, bw, cm.MiRows, cm.MiCols);
ReconInter.SetupDstPlanes(ref xd.Plane, ref xd.CurBuf, miRow, miCol);
return ref xd.Mi[0].Value;
}
private static void DecodeBlock(
ref TileWorkerData twd,
ref Vp9Common cm,
int miRow,
int miCol,
BlockSize bsize,
int bwl,
int bhl)
{
bool less8x8 = bsize < BlockSize.Block8x8;
int bw = 1 << (bwl - 1);
int bh = 1 << (bhl - 1);
int xMis = Math.Min(bw, cm.MiCols - miCol);
int yMis = Math.Min(bh, cm.MiRows - miRow);
ref Reader r = ref twd.BitReader;
ref MacroBlockD xd = ref twd.Xd;
ref ModeInfo mi = ref SetOffsets(ref cm, ref xd, bsize, miRow, miCol, bw, bh, xMis, yMis, bwl, bhl);
if (bsize >= BlockSize.Block8x8 && (cm.SubsamplingX != 0 || cm.SubsamplingY != 0))
{
BlockSize uvSubsize = Luts.SsSizeLookup[(int)bsize][cm.SubsamplingX][cm.SubsamplingY];
if (uvSubsize == BlockSize.BlockInvalid)
{
xd.ErrorInfo.Value.InternalError(CodecErr.CodecCorruptFrame, "Invalid block size.");
}
}
DecodeMv.ReadModeInfo(ref twd, ref cm, miRow, miCol, xMis, yMis);
if (mi.Skip != 0)
{
DecResetSkipContext(ref xd);
}
if (!mi.IsInterBlock())
{
int plane;
for (plane = 0; plane < Constants.MaxMbPlane; ++plane)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
TxSize txSize = plane != 0 ? mi.GetUvTxSize(ref pd) : mi.TxSize;
int num4x4W = pd.N4W;
int num4x4H = pd.N4H;
int step = 1 << (int)txSize;
int row, col;
int maxBlocksWide = num4x4W + (xd.MbToRightEdge >= 0 ? 0 : xd.MbToRightEdge >> (5 + pd.SubsamplingX));
int maxBlocksHigh = num4x4H + (xd.MbToBottomEdge >= 0 ? 0 : xd.MbToBottomEdge >> (5 + pd.SubsamplingY));
xd.MaxBlocksWide = (uint)(xd.MbToRightEdge >= 0 ? 0 : maxBlocksWide);
xd.MaxBlocksHigh = (uint)(xd.MbToBottomEdge >= 0 ? 0 : maxBlocksHigh);
for (row = 0; row < maxBlocksHigh; row += step)
{
for (col = 0; col < maxBlocksWide; col += step)
{
PredictAndReconstructIntraBlock(ref twd, ref mi, plane, row, col, txSize);
}
}
}
}
else
{
// Prediction
DecBuildInterPredictorsSb(ref cm, ref xd, miRow, miCol);
// Reconstruction
if (mi.Skip == 0)
{
int eobtotal = 0;
int plane;
for (plane = 0; plane < Constants.MaxMbPlane; ++plane)
{
ref MacroBlockDPlane pd = ref xd.Plane[plane];
TxSize txSize = plane != 0 ? mi.GetUvTxSize(ref pd) : mi.TxSize;
int num4x4W = pd.N4W;
int num4x4H = pd.N4H;
int step = 1 << (int)txSize;
int row, col;
int maxBlocksWide = num4x4W + (xd.MbToRightEdge >= 0 ? 0 : xd.MbToRightEdge >> (5 + pd.SubsamplingX));
int maxBlocksHigh = num4x4H + (xd.MbToBottomEdge >= 0 ? 0 : xd.MbToBottomEdge >> (5 + pd.SubsamplingY));
xd.MaxBlocksWide = (uint)(xd.MbToRightEdge >= 0 ? 0 : maxBlocksWide);
xd.MaxBlocksHigh = (uint)(xd.MbToBottomEdge >= 0 ? 0 : maxBlocksHigh);
for (row = 0; row < maxBlocksHigh; row += step)
{
for (col = 0; col < maxBlocksWide; col += step)
{
eobtotal += ReconstructInterBlock(ref twd, ref mi, plane, row, col, txSize);
}
}
}
if (!less8x8 && eobtotal == 0)
{
mi.Skip = 1; // Skip loopfilter
}
}
}
xd.Corrupted |= r.HasError();
if (cm.Lf.FilterLevel != 0)
{
LoopFilter.BuildMask(ref cm, ref mi, miRow, miCol, bw, bh);
}
}
private static int DecPartitionPlaneContext(ref TileWorkerData twd, int miRow, int miCol, int bsl)
{
ref sbyte aboveCtx = ref twd.Xd.AboveSegContext[miCol];
ref sbyte leftCtx = ref twd.Xd.LeftSegContext[miRow & Constants.MiMask];
int above = (aboveCtx >> bsl) & 1, left = (leftCtx >> bsl) & 1;
return (left * 2 + above) + bsl * Constants.PartitionPloffset;
}
private static void DecUpdatePartitionContext(
ref TileWorkerData twd,
int miRow,
int miCol,
BlockSize subsize,
int bw)
{
Span<sbyte> aboveCtx = twd.Xd.AboveSegContext.Slice(miCol).AsSpan();
Span<sbyte> leftCtx = MemoryMarshal.CreateSpan(ref twd.Xd.LeftSegContext[miRow & Constants.MiMask], 8 - (miRow & Constants.MiMask));
// Update the partition context at the end notes. Set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
aboveCtx.Slice(0, bw).Fill(Luts.PartitionContextLookup[(int)subsize].Above);
leftCtx.Slice(0, bw).Fill(Luts.PartitionContextLookup[(int)subsize].Left);
}
private static PartitionType ReadPartition(
ref TileWorkerData twd,
int miRow,
int miCol,
int hasRows,
int hasCols,
int bsl)
{
int ctx = DecPartitionPlaneContext(ref twd, miRow, miCol, bsl);
ReadOnlySpan<byte> probs = MemoryMarshal.CreateReadOnlySpan(ref twd.Xd.PartitionProbs[ctx][0], 3);
PartitionType p;
ref Reader r = ref twd.BitReader;
if (hasRows != 0 && hasCols != 0)
{
p = (PartitionType)r.ReadTree(Luts.Vp9PartitionTree, probs);
}
else if (hasRows == 0 && hasCols != 0)
{
p = r.Read(probs[1]) != 0 ? PartitionType.PartitionSplit : PartitionType.PartitionHorz;
}
else if (hasRows != 0 && hasCols == 0)
{
p = r.Read(probs[2]) != 0 ? PartitionType.PartitionSplit : PartitionType.PartitionVert;
}
else
{
p = PartitionType.PartitionSplit;
}
if (!twd.Xd.Counts.IsNull)
{
++twd.Xd.Counts.Value.Partition[ctx][(int)p];
}
return p;
}
private static void DecodePartition(
ref TileWorkerData twd,
ref Vp9Common cm,
int miRow,
int miCol,
BlockSize bsize,
int n4x4L2)
{
int n8x8L2 = n4x4L2 - 1;
int num8x8Wh = 1 << n8x8L2;
int hbs = num8x8Wh >> 1;
PartitionType partition;
BlockSize subsize;
bool hasRows = (miRow + hbs) < cm.MiRows;
bool hasCols = (miCol + hbs) < cm.MiCols;
ref MacroBlockD xd = ref twd.Xd;
if (miRow >= cm.MiRows || miCol >= cm.MiCols)
{
return;
}
partition = ReadPartition(ref twd, miRow, miCol, hasRows ? 1 : 0, hasCols ? 1 : 0, n8x8L2);
subsize = Luts.SubsizeLookup[(int)partition][(int)bsize];
if (hbs == 0)
{
// Calculate bmode block dimensions (log 2)
xd.BmodeBlocksWl = (byte)(1 >> ((partition & PartitionType.PartitionVert) != 0 ? 1 : 0));
xd.BmodeBlocksHl = (byte)(1 >> ((partition & PartitionType.PartitionHorz) != 0 ? 1 : 0));
DecodeBlock(ref twd, ref cm, miRow, miCol, subsize, 1, 1);
}
else
{
switch (partition)
{
case PartitionType.PartitionNone:
DecodeBlock(ref twd, ref cm, miRow, miCol, subsize, n4x4L2, n4x4L2);
break;
case PartitionType.PartitionHorz:
DecodeBlock(ref twd, ref cm, miRow, miCol, subsize, n4x4L2, n8x8L2);
if (hasRows)
{
DecodeBlock(ref twd, ref cm, miRow + hbs, miCol, subsize, n4x4L2, n8x8L2);
}
break;
case PartitionType.PartitionVert:
DecodeBlock(ref twd, ref cm, miRow, miCol, subsize, n8x8L2, n4x4L2);
if (hasCols)
{
DecodeBlock(ref twd, ref cm, miRow, miCol + hbs, subsize, n8x8L2, n4x4L2);
}
break;
case PartitionType.PartitionSplit:
DecodePartition(ref twd, ref cm, miRow, miCol, subsize, n8x8L2);
DecodePartition(ref twd, ref cm, miRow, miCol + hbs, subsize, n8x8L2);
DecodePartition(ref twd, ref cm, miRow + hbs, miCol, subsize, n8x8L2);
DecodePartition(ref twd, ref cm, miRow + hbs, miCol + hbs, subsize, n8x8L2);
break;
default: Debug.Assert(false, "Invalid partition type"); break;
}
}
// Update partition context
if (bsize >= BlockSize.Block8x8 && (bsize == BlockSize.Block8x8 || partition != PartitionType.PartitionSplit))
{
DecUpdatePartitionContext(ref twd, miRow, miCol, subsize, num8x8Wh);
}
}
private static void SetupTokenDecoder(
ArrayPtr<byte> data,
int readSize,
ref InternalErrorInfo errorInfo,
ref Reader r)
{
// Validate the calculated partition length. If the buffer described by the
// partition can't be fully read then throw an error.
if (!ReadIsValid(data, readSize))
{
errorInfo.InternalError(CodecErr.CodecCorruptFrame, "Truncated packet or corrupt tile length");
}
if (r.Init(data, readSize))
{
errorInfo.InternalError(CodecErr.CodecMemError, "Failed to allocate bool decoder 1");
}
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'isLast'.
private static void GetTileBuffer(
bool isLast,
ref InternalErrorInfo errorInfo,
ref ArrayPtr<byte> data,
ref TileBuffer buf)
{
int size;
if (!isLast)
{
if (!ReadIsValid(data, 4))
{
errorInfo.InternalError(CodecErr.CodecCorruptFrame, "Truncated packet or corrupt tile length");
}
size = BinaryPrimitives.ReadInt32BigEndian(data.AsSpan());
data = data.Slice(4);
if (size > data.Length)
{
errorInfo.InternalError(CodecErr.CodecCorruptFrame, "Truncated packet or corrupt tile size");
}
}
else
{
size = data.Length;
}
buf.Data = data;
buf.Size = size;
data = data.Slice(size);
}
private static void GetTileBuffers(ref Vp9Common cm, ArrayPtr<byte> data, int tileCols, ref Array64<TileBuffer> tileBuffers)
{
int c;
for (c = 0; c < tileCols; ++c)
{
bool isLast = c == tileCols - 1;
ref TileBuffer buf = ref tileBuffers[c];
buf.Col = c;
GetTileBuffer(isLast, ref cm.Error, ref data, ref buf);
}
}
private static void GetTileBuffers(
ref Vp9Common cm,
ArrayPtr<byte> data,
int tileCols,
int tileRows,
ref Array4<Array64<TileBuffer>> tileBuffers)
{
int r, c;
for (r = 0; r < tileRows; ++r)
{
for (c = 0; c < tileCols; ++c)
{
bool isLast = (r == tileRows - 1) && (c == tileCols - 1);
ref TileBuffer buf = ref tileBuffers[r][c];
GetTileBuffer(isLast, ref cm.Error, ref data, ref buf);
}
}
}
public static unsafe ArrayPtr<byte> DecodeTiles(ref Vp9Common cm, ArrayPtr<byte> data)
{
int alignedCols = TileInfo.MiColsAlignedToSb(cm.MiCols);
int tileCols = 1 << cm.Log2TileCols;
int tileRows = 1 << cm.Log2TileRows;
Array4<Array64<TileBuffer>> tileBuffers = new Array4<Array64<TileBuffer>>();
int tileRow, tileCol;
int miRow, miCol;
Debug.Assert(tileRows <= 4);
Debug.Assert(tileCols <= (1 << 6));
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
MemoryUtil.Fill(cm.AboveContext.ToPointer(), (sbyte)0, Constants.MaxMbPlane * 2 * alignedCols);
MemoryUtil.Fill(cm.AboveSegContext.ToPointer(), (sbyte)0, alignedCols);
LoopFilter.ResetLfm(ref cm);
GetTileBuffers(ref cm, data, tileCols, tileRows, ref tileBuffers);
// Load all tile information into tile_data.
for (tileRow = 0; tileRow < tileRows; ++tileRow)
{
for (tileCol = 0; tileCol < tileCols; ++tileCol)
{
ref TileBuffer buf = ref tileBuffers[tileRow][tileCol];
ref TileWorkerData tileData = ref cm.TileWorkerData[tileCols * tileRow + tileCol];
tileData.Xd = cm.Mb;
tileData.Xd.Corrupted = false;
tileData.Xd.Counts = cm.Counts;
tileData.Dqcoeff = new Array32<Array32<int>>();
tileData.Xd.Tile.Init(ref cm, tileRow, tileCol);
SetupTokenDecoder(buf.Data, buf.Size, ref cm.Error, ref tileData.BitReader);
cm.InitMacroBlockD(ref tileData.Xd, new ArrayPtr<int>(ref tileData.Dqcoeff[0][0], 32 * 32));
}
}
for (tileRow = 0; tileRow < tileRows; ++tileRow)
{
TileInfo tile = new TileInfo();
tile.SetRow(ref cm, tileRow);
for (miRow = tile.MiRowStart; miRow < tile.MiRowEnd; miRow += Constants.MiBlockSize)
{
for (tileCol = 0; tileCol < tileCols; ++tileCol)
{
int col = tileCol;
ref TileWorkerData tileData = ref cm.TileWorkerData[tileCols * tileRow + col];
tile.SetCol(ref cm, col);
tileData.Xd.LeftContext = new Array3<Array16<sbyte>>();
tileData.Xd.LeftSegContext = new Array8<sbyte>();
for (miCol = tile.MiColStart; miCol < tile.MiColEnd; miCol += Constants.MiBlockSize)
{
DecodePartition(ref tileData, ref cm, miRow, miCol, BlockSize.Block64x64, 4);
}
cm.Mb.Corrupted |= tileData.Xd.Corrupted;
if (cm.Mb.Corrupted)
{
cm.Error.InternalError(CodecErr.CodecCorruptFrame, "Failed to decode tile data");
}
}
}
}
// Get last tile data.
return cm.TileWorkerData[tileCols * tileRows - 1].BitReader.FindEnd();
}
private static bool DecodeTileCol(ref TileWorkerData tileData, ref Vp9Common cm, ref Array64<TileBuffer> tileBuffers)
{
ref TileInfo tile = ref tileData.Xd.Tile;
int finalCol = (1 << cm.Log2TileCols) - 1;
ArrayPtr<byte> bitReaderEnd = ArrayPtr<byte>.Null;
int n = tileData.BufStart;
tileData.Xd.Corrupted = false;
do
{
ref TileBuffer buf = ref tileBuffers[n];
Debug.Assert(cm.Log2TileRows == 0);
tileData.Dqcoeff = new Array32<Array32<int>>();
tile.Init(ref cm, 0, buf.Col);
SetupTokenDecoder(buf.Data, buf.Size, ref tileData.ErrorInfo, ref tileData.BitReader);
cm.InitMacroBlockD(ref tileData.Xd, new ArrayPtr<int>(ref tileData.Dqcoeff[0][0], 32 * 32));
tileData.Xd.ErrorInfo = new Ptr<InternalErrorInfo>(ref tileData.ErrorInfo);
for (int miRow = tile.MiRowStart; miRow < tile.MiRowEnd; miRow += Constants.MiBlockSize)
{
tileData.Xd.LeftContext = new Array3<Array16<sbyte>>();
tileData.Xd.LeftSegContext = new Array8<sbyte>();
for (int miCol = tile.MiColStart; miCol < tile.MiColEnd; miCol += Constants.MiBlockSize)
{
DecodePartition(ref tileData, ref cm, miRow, miCol, BlockSize.Block64x64, 4);
}
}
if (buf.Col == finalCol)
{
bitReaderEnd = tileData.BitReader.FindEnd();
}
} while (!tileData.Xd.Corrupted && ++n <= tileData.BufEnd);
tileData.DataEnd = bitReaderEnd;
return !tileData.Xd.Corrupted;
}
public static unsafe ArrayPtr<byte> DecodeTilesMt(ref Vp9Common cm, ArrayPtr<byte> data, int maxThreads)
{
ArrayPtr<byte> bitReaderEnd = ArrayPtr<byte>.Null;
int tileCols = 1 << cm.Log2TileCols;
int tileRows = 1 << cm.Log2TileRows;
int totalTiles = tileCols * tileRows;
int numWorkers = Math.Min(maxThreads, tileCols);
int n;
Debug.Assert(tileCols <= (1 << 6));
Debug.Assert(tileRows == 1);
cm.AboveContext.AsSpan().Fill(0);
cm.AboveSegContext.AsSpan().Fill(0);
for (n = 0; n < numWorkers; ++n)
{
ref TileWorkerData tileData = ref cm.TileWorkerData[n + totalTiles];
tileData.Xd = cm.Mb;
tileData.Xd.Counts = new Ptr<Vp9BackwardUpdates>(ref tileData.Counts);
tileData.Counts = new Vp9BackwardUpdates();
}
Array64<TileBuffer> tileBuffers = new Array64<TileBuffer>();
GetTileBuffers(ref cm, data, tileCols, ref tileBuffers);
tileBuffers.AsSpan().Slice(0, tileCols).Sort(CompareTileBuffers);
if (numWorkers == tileCols)
{
TileBuffer largest = tileBuffers[0];
Span<TileBuffer> buffers = tileBuffers.AsSpan();
buffers.Slice(1).CopyTo(buffers.Slice(0, tileBuffers.Length - 1));
tileBuffers[tileCols - 1] = largest;
}
else
{
int start = 0, end = tileCols - 2;
TileBuffer tmp;
// Interleave the tiles to distribute the load between threads, assuming a
// larger tile implies it is more difficult to decode.
while (start < end)
{
tmp = tileBuffers[start];
tileBuffers[start] = tileBuffers[end];
tileBuffers[end] = tmp;
start += 2;
end -= 2;
}
}
int baseVal = tileCols / numWorkers;
int remain = tileCols % numWorkers;
int bufStart = 0;
for (n = 0; n < numWorkers; ++n)
{
int count = baseVal + (remain + n) / numWorkers;
ref TileWorkerData tileData = ref cm.TileWorkerData[n + totalTiles];
tileData.BufStart = bufStart;
tileData.BufEnd = bufStart + count - 1;
tileData.DataEnd = data.Slice(data.Length);
bufStart += count;
}
Ptr<Vp9Common> cmPtr = new Ptr<Vp9Common>(ref cm);
Parallel.For(0, numWorkers, (n) =>
{
ref TileWorkerData tileData = ref cmPtr.Value.TileWorkerData[n + totalTiles];
if (!DecodeTileCol(ref tileData, ref cmPtr.Value, ref tileBuffers))
{
cmPtr.Value.Mb.Corrupted = true;
}
});
for (; n > 0; --n)
{
if (bitReaderEnd.IsNull)
{
ref TileWorkerData tileData = ref cm.TileWorkerData[n - 1 + totalTiles];
bitReaderEnd = tileData.DataEnd;
}
}
for (n = 0; n < numWorkers; ++n)
{
ref TileWorkerData tileData = ref cm.TileWorkerData[n + totalTiles];
AccumulateFrameCounts(ref cm.Counts.Value, ref tileData.Counts);
}
Debug.Assert(!bitReaderEnd.IsNull || cm.Mb.Corrupted);
return bitReaderEnd;
}
private static int CompareTileBuffers(TileBuffer bufA, TileBuffer bufB)
{
return (bufA.Size < bufB.Size ? 1 : 0) - (bufA.Size > bufB.Size ? 1 : 0);
}
private static void AccumulateFrameCounts(ref Vp9BackwardUpdates accum, ref Vp9BackwardUpdates counts)
{
Span<uint> a = MemoryMarshal.Cast<Vp9BackwardUpdates, uint>(MemoryMarshal.CreateSpan(ref accum, 1));
Span<uint> c = MemoryMarshal.Cast<Vp9BackwardUpdates, uint>(MemoryMarshal.CreateSpan(ref counts, 1));
for (int i = 0; i < a.Length; i++)
{
a[i] += c[i];
}
}
}
}