1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2025-01-22 01:17:07 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Process/KProcess.cs
gdkchan 6c9565693f
IPC refactor part 1: Use explicit separate threads to process requests (#1447)
* Changes to allow explicit management of service threads

* Remove now unused code

* Remove ThreadCounter, its no longer needed

* Allow and use separate server per service, also fix exit issues

* New policy change: PTC version now uses PR number
2020-09-22 14:50:40 +10:00

1117 lines
No EOL
34 KiB
C#

using ARMeilleure.State;
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Cpu;
using Ryujinx.HLE.Exceptions;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Threading;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Process
{
class KProcess : KSynchronizationObject
{
public const int KernelVersionMajor = 10;
public const int KernelVersionMinor = 4;
public const int KernelVersionRevision = 0;
public const int KernelVersionPacked =
(KernelVersionMajor << 19) |
(KernelVersionMinor << 15) |
(KernelVersionRevision << 0);
public KMemoryManager MemoryManager { get; private set; }
private SortedDictionary<ulong, KTlsPageInfo> _fullTlsPages;
private SortedDictionary<ulong, KTlsPageInfo> _freeTlsPages;
public int DefaultCpuCore { get; set; }
public bool Debug { get; private set; }
public KResourceLimit ResourceLimit { get; private set; }
public ulong PersonalMmHeapPagesCount { get; private set; }
public ProcessState State { get; private set; }
private object _processLock;
private object _threadingLock;
public KAddressArbiter AddressArbiter { get; private set; }
public long[] RandomEntropy { get; private set; }
private bool _signaled;
private bool _useSystemMemBlocks;
public string Name { get; private set; }
private int _threadCount;
public int MmuFlags { get; private set; }
private MemoryRegion _memRegion;
public KProcessCapabilities Capabilities { get; private set; }
public ulong TitleId { get; private set; }
public long Pid { get; private set; }
private long _creationTimestamp;
private ulong _entrypoint;
private ulong _imageSize;
private ulong _mainThreadStackSize;
private ulong _memoryUsageCapacity;
private int _version;
public KHandleTable HandleTable { get; private set; }
public ulong UserExceptionContextAddress { get; private set; }
private LinkedList<KThread> _threads;
public bool IsPaused { get; private set; }
public MemoryManager CpuMemory { get; private set; }
public CpuContext CpuContext { get; private set; }
public HleProcessDebugger Debugger { get; private set; }
public KProcess(KernelContext context) : base(context)
{
_processLock = new object();
_threadingLock = new object();
AddressArbiter = new KAddressArbiter(context);
_fullTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
_freeTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
Capabilities = new KProcessCapabilities();
RandomEntropy = new long[KScheduler.CpuCoresCount];
_threads = new LinkedList<KThread>();
Debugger = new HleProcessDebugger(this);
}
public KernelResult InitializeKip(
ProcessCreationInfo creationInfo,
int[] caps,
KPageList pageList,
KResourceLimit resourceLimit,
MemoryRegion memRegion)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
AddressSpaceType addrSpaceType = (AddressSpaceType)((creationInfo.MmuFlags >> 1) & 7);
InitializeMemoryManager(addrSpaceType, memRegion);
bool aslrEnabled = ((creationInfo.MmuFlags >> 5) & 1) != 0;
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = (ulong)creationInfo.CodePagesCount * KMemoryManager.PageSize;
KMemoryBlockAllocator memoryBlockAllocator = (MmuFlags & 0x40) != 0
? KernelContext.LargeMemoryBlockAllocator
: KernelContext.SmallMemoryBlockAllocator;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
memoryBlockAllocator);
if (result != KernelResult.Success)
{
return result;
}
if (!ValidateCodeAddressAndSize(codeAddress, codeSize))
{
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapPages(
codeAddress,
pageList,
MemoryState.CodeStatic,
MemoryPermission.None);
if (result != KernelResult.Success)
{
return result;
}
result = Capabilities.InitializeForKernel(caps, MemoryManager);
if (result != KernelResult.Success)
{
return result;
}
Pid = KernelContext.NewKipId();
if (Pid == 0 || (ulong)Pid >= KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid KIP Id {Pid}.");
}
result = ParseProcessInfo(creationInfo);
return result;
}
public KernelResult Initialize(
ProcessCreationInfo creationInfo,
int[] caps,
KResourceLimit resourceLimit,
MemoryRegion memRegion)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
ulong personalMmHeapSize = GetPersonalMmHeapSize((ulong)creationInfo.PersonalMmHeapPagesCount, memRegion);
ulong codePagesCount = (ulong)creationInfo.CodePagesCount;
ulong neededSizeForProcess = personalMmHeapSize + codePagesCount * KMemoryManager.PageSize;
if (neededSizeForProcess != 0 && resourceLimit != null)
{
if (!resourceLimit.Reserve(LimitableResource.Memory, neededSizeForProcess))
{
return KernelResult.ResLimitExceeded;
}
}
void CleanUpForError()
{
if (neededSizeForProcess != 0 && resourceLimit != null)
{
resourceLimit.Release(LimitableResource.Memory, neededSizeForProcess);
}
}
PersonalMmHeapPagesCount = (ulong)creationInfo.PersonalMmHeapPagesCount;
KMemoryBlockAllocator memoryBlockAllocator;
if (PersonalMmHeapPagesCount != 0)
{
memoryBlockAllocator = new KMemoryBlockAllocator(PersonalMmHeapPagesCount * KMemoryManager.PageSize);
}
else
{
memoryBlockAllocator = (MmuFlags & 0x40) != 0
? KernelContext.LargeMemoryBlockAllocator
: KernelContext.SmallMemoryBlockAllocator;
}
AddressSpaceType addrSpaceType = (AddressSpaceType)((creationInfo.MmuFlags >> 1) & 7);
InitializeMemoryManager(addrSpaceType, memRegion);
bool aslrEnabled = ((creationInfo.MmuFlags >> 5) & 1) != 0;
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = codePagesCount * KMemoryManager.PageSize;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
memoryBlockAllocator);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
if (!ValidateCodeAddressAndSize(codeAddress, codeSize))
{
CleanUpForError();
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapNewProcessCode(
codeAddress,
codePagesCount,
MemoryState.CodeStatic,
MemoryPermission.None);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = Capabilities.InitializeForUser(caps, MemoryManager);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
Pid = KernelContext.NewProcessId();
if (Pid == -1 || (ulong)Pid < KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid Process Id {Pid}.");
}
result = ParseProcessInfo(creationInfo);
if (result != KernelResult.Success)
{
CleanUpForError();
}
return result;
}
private bool ValidateCodeAddressAndSize(ulong address, ulong size)
{
ulong codeRegionStart;
ulong codeRegionSize;
switch (MemoryManager.AddrSpaceWidth)
{
case 32:
codeRegionStart = 0x200000;
codeRegionSize = 0x3fe00000;
break;
case 36:
codeRegionStart = 0x8000000;
codeRegionSize = 0x78000000;
break;
case 39:
codeRegionStart = 0x8000000;
codeRegionSize = 0x7ff8000000;
break;
default: throw new InvalidOperationException("Invalid address space width on memory manager.");
}
ulong endAddr = address + size;
ulong codeRegionEnd = codeRegionStart + codeRegionSize;
if (endAddr <= address ||
endAddr - 1 > codeRegionEnd - 1)
{
return false;
}
if (MemoryManager.InsideHeapRegion (address, size) ||
MemoryManager.InsideAliasRegion(address, size))
{
return false;
}
return true;
}
private KernelResult ParseProcessInfo(ProcessCreationInfo creationInfo)
{
// Ensure that the current kernel version is equal or above to the minimum required.
uint requiredKernelVersionMajor = (uint)Capabilities.KernelReleaseVersion >> 19;
uint requiredKernelVersionMinor = ((uint)Capabilities.KernelReleaseVersion >> 15) & 0xf;
if (KernelContext.EnableVersionChecks)
{
if (requiredKernelVersionMajor > KernelVersionMajor)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMajor != KernelVersionMajor && requiredKernelVersionMajor < 3)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMinor > KernelVersionMinor)
{
return KernelResult.InvalidCombination;
}
}
KernelResult result = AllocateThreadLocalStorage(out ulong userExceptionContextAddress);
if (result != KernelResult.Success)
{
return result;
}
UserExceptionContextAddress = userExceptionContextAddress;
MemoryHelper.FillWithZeros(CpuMemory, (long)userExceptionContextAddress, KTlsPageInfo.TlsEntrySize);
Name = creationInfo.Name;
State = ProcessState.Created;
_creationTimestamp = PerformanceCounter.ElapsedMilliseconds;
MmuFlags = creationInfo.MmuFlags;
_version = creationInfo.Version;
TitleId = creationInfo.TitleId;
_entrypoint = creationInfo.CodeAddress;
_imageSize = (ulong)creationInfo.CodePagesCount * KMemoryManager.PageSize;
_useSystemMemBlocks = ((MmuFlags >> 6) & 1) != 0;
switch ((AddressSpaceType)((MmuFlags >> 1) & 7))
{
case AddressSpaceType.Addr32Bits:
case AddressSpaceType.Addr36Bits:
case AddressSpaceType.Addr39Bits:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart;
break;
case AddressSpaceType.Addr32BitsNoMap:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart +
MemoryManager.AliasRegionEnd -
MemoryManager.AliasRegionStart;
break;
default: throw new InvalidOperationException($"Invalid MMU flags value 0x{MmuFlags:x2}.");
}
GenerateRandomEntropy();
return KernelResult.Success;
}
public KernelResult AllocateThreadLocalStorage(out ulong address)
{
KernelContext.CriticalSection.Enter();
KernelResult result;
if (_freeTlsPages.Count > 0)
{
// If we have free TLS pages available, just use the first one.
KTlsPageInfo pageInfo = _freeTlsPages.Values.First();
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
if (pageInfo.IsFull())
{
_freeTlsPages.Remove(pageInfo.PageAddr);
_fullTlsPages.Add(pageInfo.PageAddr, pageInfo);
}
result = KernelResult.Success;
}
else
{
// Otherwise, we need to create a new one.
result = AllocateTlsPage(out KTlsPageInfo pageInfo);
if (result == KernelResult.Success)
{
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
_freeTlsPages.Add(pageInfo.PageAddr, pageInfo);
}
else
{
address = 0;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult AllocateTlsPage(out KTlsPageInfo pageInfo)
{
pageInfo = default;
if (!KernelContext.UserSlabHeapPages.TryGetItem(out ulong tlsPagePa))
{
return KernelResult.OutOfMemory;
}
ulong regionStart = MemoryManager.TlsIoRegionStart;
ulong regionSize = MemoryManager.TlsIoRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KMemoryManager.PageSize;
KernelResult result = MemoryManager.AllocateOrMapPa(
1,
KMemoryManager.PageSize,
tlsPagePa,
true,
regionStart,
regionPagesCount,
MemoryState.ThreadLocal,
MemoryPermission.ReadAndWrite,
out ulong tlsPageVa);
if (result != KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(tlsPagePa);
}
else
{
pageInfo = new KTlsPageInfo(tlsPageVa);
MemoryHelper.FillWithZeros(CpuMemory, (long)tlsPageVa, KMemoryManager.PageSize);
}
return result;
}
public KernelResult FreeThreadLocalStorage(ulong tlsSlotAddr)
{
ulong tlsPageAddr = BitUtils.AlignDown(tlsSlotAddr, KMemoryManager.PageSize);
KernelContext.CriticalSection.Enter();
KernelResult result = KernelResult.Success;
KTlsPageInfo pageInfo = null;
if (_fullTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
// TLS page was full, free slot and move to free pages tree.
_fullTlsPages.Remove(tlsPageAddr);
_freeTlsPages.Add(tlsPageAddr, pageInfo);
}
else if (!_freeTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
result = KernelResult.InvalidAddress;
}
if (pageInfo != null)
{
pageInfo.FreeTlsSlot(tlsSlotAddr);
if (pageInfo.IsEmpty())
{
// TLS page is now empty, we should ensure it is removed
// from all trees, and free the memory it was using.
_freeTlsPages.Remove(tlsPageAddr);
KernelContext.CriticalSection.Leave();
FreeTlsPage(pageInfo);
return KernelResult.Success;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult FreeTlsPage(KTlsPageInfo pageInfo)
{
if (!MemoryManager.TryConvertVaToPa(pageInfo.PageAddr, out ulong tlsPagePa))
{
throw new InvalidOperationException("Unexpected failure translating virtual address to physical.");
}
KernelResult result = MemoryManager.UnmapForKernel(pageInfo.PageAddr, 1, MemoryState.ThreadLocal);
if (result == KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(tlsPagePa);
}
return result;
}
private void GenerateRandomEntropy()
{
// TODO.
}
public KernelResult Start(int mainThreadPriority, ulong stackSize)
{
lock (_processLock)
{
if (State > ProcessState.CreatedAttached)
{
return KernelResult.InvalidState;
}
if (ResourceLimit != null && !ResourceLimit.Reserve(LimitableResource.Thread, 1))
{
return KernelResult.ResLimitExceeded;
}
KResourceLimit threadResourceLimit = ResourceLimit;
KResourceLimit memoryResourceLimit = null;
if (_mainThreadStackSize != 0)
{
throw new InvalidOperationException("Trying to start a process with a invalid state!");
}
ulong stackSizeRounded = BitUtils.AlignUp(stackSize, KMemoryManager.PageSize);
ulong neededSize = stackSizeRounded + _imageSize;
// Check if the needed size for the code and the stack will fit on the
// memory usage capacity of this Process. Also check for possible overflow
// on the above addition.
if (neededSize > _memoryUsageCapacity ||
neededSize < stackSizeRounded)
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.OutOfMemory;
}
if (stackSizeRounded != 0 && ResourceLimit != null)
{
memoryResourceLimit = ResourceLimit;
if (!memoryResourceLimit.Reserve(LimitableResource.Memory, stackSizeRounded))
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.ResLimitExceeded;
}
}
KernelResult result;
KThread mainThread = null;
ulong stackTop = 0;
void CleanUpForError()
{
HandleTable.Destroy();
mainThread?.DecrementReferenceCount();
if (_mainThreadStackSize != 0)
{
ulong stackBottom = stackTop - _mainThreadStackSize;
ulong stackPagesCount = _mainThreadStackSize / KMemoryManager.PageSize;
MemoryManager.UnmapForKernel(stackBottom, stackPagesCount, MemoryState.Stack);
_mainThreadStackSize = 0;
}
memoryResourceLimit?.Release(LimitableResource.Memory, stackSizeRounded);
threadResourceLimit?.Release(LimitableResource.Thread, 1);
}
if (stackSizeRounded != 0)
{
ulong stackPagesCount = stackSizeRounded / KMemoryManager.PageSize;
ulong regionStart = MemoryManager.StackRegionStart;
ulong regionSize = MemoryManager.StackRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KMemoryManager.PageSize;
result = MemoryManager.AllocateOrMapPa(
stackPagesCount,
KMemoryManager.PageSize,
0,
false,
regionStart,
regionPagesCount,
MemoryState.Stack,
MemoryPermission.ReadAndWrite,
out ulong stackBottom);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
_mainThreadStackSize += stackSizeRounded;
stackTop = stackBottom + stackSizeRounded;
}
ulong heapCapacity = _memoryUsageCapacity - _mainThreadStackSize - _imageSize;
result = MemoryManager.SetHeapCapacity(heapCapacity);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
HandleTable = new KHandleTable(KernelContext);
result = HandleTable.Initialize(Capabilities.HandleTableSize);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread = new KThread(KernelContext);
result = mainThread.Initialize(
_entrypoint,
0,
stackTop,
mainThreadPriority,
DefaultCpuCore,
this);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = HandleTable.GenerateHandle(mainThread, out int mainThreadHandle);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread.SetEntryArguments(0, mainThreadHandle);
ProcessState oldState = State;
ProcessState newState = State != ProcessState.Created
? ProcessState.Attached
: ProcessState.Started;
SetState(newState);
// TODO: We can't call KThread.Start from a non-guest thread.
// We will need to make some changes to allow the creation of
// dummy threads that will be used to initialize the current
// thread on KCoreContext so that GetCurrentThread doesn't fail.
/* Result = MainThread.Start();
if (Result != KernelResult.Success)
{
SetState(OldState);
CleanUpForError();
} */
mainThread.Reschedule(ThreadSchedState.Running);
if (result == KernelResult.Success)
{
mainThread.IncrementReferenceCount();
}
mainThread.DecrementReferenceCount();
return result;
}
}
private void SetState(ProcessState newState)
{
if (State != newState)
{
State = newState;
_signaled = true;
Signal();
}
}
public KernelResult InitializeThread(
KThread thread,
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore)
{
lock (_processLock)
{
return thread.Initialize(entrypoint, argsPtr, stackTop, priority, cpuCore, this);
}
}
public void SubscribeThreadEventHandlers(ARMeilleure.State.ExecutionContext context)
{
context.Interrupt += InterruptHandler;
context.SupervisorCall += KernelContext.SyscallHandler.SvcCall;
context.Undefined += UndefinedInstructionHandler;
}
private void InterruptHandler(object sender, EventArgs e)
{
KernelContext.Scheduler.ContextSwitch();
KernelContext.Scheduler.GetCurrentThread().HandlePostSyscall();
}
public void IncrementThreadCount()
{
Interlocked.Increment(ref _threadCount);
}
public void DecrementThreadCountAndTerminateIfZero()
{
if (Interlocked.Decrement(ref _threadCount) == 0)
{
Terminate();
}
}
public void DecrementToZeroWhileTerminatingCurrent()
{
while (Interlocked.Decrement(ref _threadCount) != 0)
{
Destroy();
TerminateCurrentProcess();
}
// Nintendo panic here because if it reaches this point, the current thread should be already dead.
// As we handle the death of the thread in the post SVC handler and inside the CPU emulator, we don't panic here.
}
public ulong GetMemoryCapacity()
{
ulong totalCapacity = (ulong)ResourceLimit.GetRemainingValue(LimitableResource.Memory);
totalCapacity += MemoryManager.GetTotalHeapSize();
totalCapacity += GetPersonalMmHeapSize();
totalCapacity += _imageSize + _mainThreadStackSize;
if (totalCapacity <= _memoryUsageCapacity)
{
return totalCapacity;
}
return _memoryUsageCapacity;
}
public ulong GetMemoryUsage()
{
return _imageSize + _mainThreadStackSize + MemoryManager.GetTotalHeapSize() + GetPersonalMmHeapSize();
}
public ulong GetMemoryCapacityWithoutPersonalMmHeap()
{
return GetMemoryCapacity() - GetPersonalMmHeapSize();
}
public ulong GetMemoryUsageWithoutPersonalMmHeap()
{
return GetMemoryUsage() - GetPersonalMmHeapSize();
}
private ulong GetPersonalMmHeapSize()
{
return GetPersonalMmHeapSize(PersonalMmHeapPagesCount, _memRegion);
}
private static ulong GetPersonalMmHeapSize(ulong personalMmHeapPagesCount, MemoryRegion memRegion)
{
if (memRegion == MemoryRegion.Applet)
{
return 0;
}
return personalMmHeapPagesCount * KMemoryManager.PageSize;
}
public void AddThread(KThread thread)
{
lock (_threadingLock)
{
thread.ProcessListNode = _threads.AddLast(thread);
}
}
public void RemoveThread(KThread thread)
{
lock (_threadingLock)
{
_threads.Remove(thread.ProcessListNode);
}
}
public bool IsCpuCoreAllowed(int core)
{
return (Capabilities.AllowedCpuCoresMask & (1L << core)) != 0;
}
public bool IsPriorityAllowed(int priority)
{
return (Capabilities.AllowedThreadPriosMask & (1L << priority)) != 0;
}
public override bool IsSignaled()
{
return _signaled;
}
public KernelResult Terminate()
{
KernelResult result;
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Crashed ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelContext.Scheduler.GetCurrentThread());
HandleTable.Destroy();
SignalExitToDebugTerminated();
SignalExit();
}
return result;
}
public void TerminateCurrentProcess()
{
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelContext.Scheduler.GetCurrentThread());
HandleTable.Destroy();
// NOTE: this is supposed to be called in receiving of the mailbox.
SignalExitToDebugExited();
SignalExit();
}
}
private void UnpauseAndTerminateAllThreadsExcept(KThread currentThread)
{
lock (_threadingLock)
{
KernelContext.CriticalSection.Enter();
foreach (KThread thread in _threads)
{
if ((thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.PrepareForTermination();
}
}
KernelContext.CriticalSection.Leave();
}
while (true)
{
KThread blockedThread = null;
lock (_threadingLock)
{
foreach (KThread thread in _threads)
{
if (thread != currentThread && (thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.IncrementReferenceCount();
blockedThread = thread;
break;
}
}
}
if (blockedThread == null)
{
break;
}
blockedThread.Terminate();
blockedThread.DecrementReferenceCount();
}
}
private void SignalExitToDebugTerminated()
{
// TODO: Debug events.
}
private void SignalExitToDebugExited()
{
// TODO: Debug events.
}
private void SignalExit()
{
if (ResourceLimit != null)
{
ResourceLimit.Release(LimitableResource.Memory, GetMemoryUsage());
}
KernelContext.CriticalSection.Enter();
SetState(ProcessState.Exited);
KernelContext.CriticalSection.Leave();
}
public KernelResult ClearIfNotExited()
{
KernelResult result;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State != ProcessState.Exited && _signaled)
{
_signaled = false;
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private void InitializeMemoryManager(AddressSpaceType addrSpaceType, MemoryRegion memRegion)
{
int addrSpaceBits = addrSpaceType switch
{
AddressSpaceType.Addr32Bits => 32,
AddressSpaceType.Addr36Bits => 36,
AddressSpaceType.Addr32BitsNoMap => 32,
AddressSpaceType.Addr39Bits => 39,
_ => throw new ArgumentException(nameof(addrSpaceType))
};
CpuMemory = new MemoryManager(KernelContext.Memory, 1UL << addrSpaceBits, InvalidAccessHandler);
CpuContext = new CpuContext(CpuMemory);
// TODO: This should eventually be removed.
// The GPU shouldn't depend on the CPU memory manager at all.
KernelContext.Device.Gpu.SetVmm(CpuMemory);
MemoryManager = new KMemoryManager(KernelContext, CpuMemory);
}
private bool InvalidAccessHandler(ulong va)
{
KernelContext.Scheduler.GetCurrentThreadOrNull()?.PrintGuestStackTrace();
Logger.Error?.Print(LogClass.Cpu, $"Invalid memory access at virtual address 0x{va:X16}.");
return false;
}
private void UndefinedInstructionHandler(object sender, InstUndefinedEventArgs e)
{
KernelContext.Scheduler.GetCurrentThreadOrNull()?.PrintGuestStackTrace();
throw new UndefinedInstructionException(e.Address, e.OpCode);
}
protected override void Destroy()
{
CpuMemory.Dispose();
}
}
}