1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-12-05 02:12:02 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Threading/KAddressArbiter.cs
gdkchan 15d1cc806b
Move kernel state out of the Horizon class (#1107)
* Move kernel state from Horizon to KernelContext

* Merge syscalls partial classes, split 32 and 64-bit variants

* Sort usings
2020-05-04 13:41:29 +10:00

608 lines
18 KiB
C#

using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Threading
{
class KAddressArbiter
{
private const int HasListenersMask = 0x40000000;
private readonly KernelContext _context;
private readonly List<KThread> _condVarThreads;
private readonly List<KThread> _arbiterThreads;
public KAddressArbiter(KernelContext context)
{
_context = context;
_condVarThreads = new List<KThread>();
_arbiterThreads = new List<KThread>();
}
public KernelResult ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle)
{
KThread currentThread = _context.Scheduler.GetCurrentThread();
_context.CriticalSection.Enter();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.Success;
KProcess currentProcess = _context.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_context, mutexAddress, out int mutexValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (mutexValue != (ownerHandle | HasListenersMask))
{
_context.CriticalSection.Leave();
return 0;
}
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
if (mutexOwner == null)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidHandle;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = requesterHandle;
mutexOwner.AddMutexWaiter(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
_context.CriticalSection.Leave();
_context.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
public KernelResult ArbitrateUnlock(ulong mutexAddress)
{
_context.CriticalSection.Enter();
KThread currentThread = _context.Scheduler.GetCurrentThread();
(KernelResult result, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
if (result != KernelResult.Success && newOwnerThread != null)
{
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = result;
}
_context.CriticalSection.Leave();
return result;
}
public KernelResult WaitProcessWideKeyAtomic(
ulong mutexAddress,
ulong condVarAddress,
int threadHandle,
long timeout)
{
_context.CriticalSection.Enter();
KThread currentThread = _context.Scheduler.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
(KernelResult result, _) = MutexUnlock(currentThread, mutexAddress);
if (result != KernelResult.Success)
{
_context.CriticalSection.Leave();
return result;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = threadHandle;
currentThread.CondVarAddress = condVarAddress;
_condVarThreads.Add(currentThread);
if (timeout != 0)
{
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_condVarThreads.Remove(currentThread);
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
private (KernelResult, KThread) MutexUnlock(KThread currentThread, ulong mutexAddress)
{
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
int mutexValue = 0;
if (newOwnerThread != null)
{
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
if (count >= 2)
{
mutexValue |= HasListenersMask;
}
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = KernelResult.Success;
newOwnerThread.ReleaseAndResume();
}
KernelResult result = KernelResult.Success;
if (!KernelTransfer.KernelToUserInt32(_context, mutexAddress, mutexValue))
{
result = KernelResult.InvalidMemState;
}
return (result, newOwnerThread);
}
public void SignalProcessWideKey(ulong address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
_context.CriticalSection.Enter();
IOrderedEnumerable<KThread> sortedThreads = _condVarThreads.OrderBy(x => x.DynamicPriority);
foreach (KThread thread in sortedThreads.Where(x => x.CondVarAddress == address))
{
TryAcquireMutex(thread);
signaledThreads.Enqueue(thread);
// If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
_condVarThreads.Remove(thread);
}
_context.CriticalSection.Leave();
}
private KThread TryAcquireMutex(KThread requester)
{
ulong address = requester.MutexAddress;
KProcess currentProcess = _context.Scheduler.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
// Invalid address.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidMemState;
return null;
}
ref int mutexRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int mutexValue, newMutexValue;
do
{
mutexValue = mutexRef;
if (mutexValue != 0)
{
// Update value to indicate there is a mutex waiter now.
newMutexValue = mutexValue | HasListenersMask;
}
else
{
// No thread owning the mutex, assign to requesting thread.
newMutexValue = requester.ThreadHandleForUserMutex;
}
}
while (Interlocked.CompareExchange(ref mutexRef, newMutexValue, mutexValue) != mutexValue);
if (mutexValue == 0)
{
// We now own the mutex.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.Success;
requester.ReleaseAndResume();
return null;
}
mutexValue &= ~HasListenersMask;
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
if (mutexOwner != null)
{
// Mutex already belongs to another thread, wait for it.
mutexOwner.AddMutexWaiter(requester);
}
else
{
// Invalid mutex owner.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidHandle;
requester.ReleaseAndResume();
}
return mutexOwner;
}
public KernelResult WaitForAddressIfEqual(ulong address, int value, long timeout)
{
KThread currentThread = _context.Scheduler.GetCurrentThread();
_context.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (!KernelTransfer.UserToKernelInt32(_context, address, out int currentValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (currentValue == value)
{
if (timeout == 0)
{
_context.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(_arbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
_arbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
public KernelResult WaitForAddressIfLessThan(
ulong address,
int value,
bool shouldDecrement,
long timeout)
{
KThread currentThread = _context.Scheduler.GetCurrentThread();
_context.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
KProcess currentProcess = _context.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_context, address, out int currentValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (shouldDecrement)
{
currentValue = Interlocked.Decrement(ref currentProcess.CpuMemory.GetRef<int>(address)) + 1;
}
if (currentValue < value)
{
if (timeout == 0)
{
_context.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(_arbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
_arbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
private void InsertSortedByPriority(List<KThread> threads, KThread thread)
{
int nextIndex = -1;
for (int index = 0; index < threads.Count; index++)
{
if (threads[index].DynamicPriority > thread.DynamicPriority)
{
nextIndex = index;
break;
}
}
if (nextIndex != -1)
{
threads.Insert(nextIndex, thread);
}
else
{
threads.Add(thread);
}
}
public KernelResult Signal(ulong address, int count)
{
_context.CriticalSection.Enter();
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndIncrementIfEqual(ulong address, int value, int count)
{
_context.CriticalSection.Enter();
KProcess currentProcess = _context.Scheduler.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int currentValue;
do
{
currentValue = valueRef;
if (currentValue != value)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (Interlocked.CompareExchange(ref valueRef, currentValue + 1, currentValue) != currentValue);
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndModifyIfEqual(ulong address, int value, int count)
{
_context.CriticalSection.Enter();
int offset;
// The value is decremented if the number of threads waiting is less
// or equal to the Count of threads to be signaled, or Count is zero
// or negative. It is incremented if there are no threads waiting.
int waitingCount = 0;
foreach (KThread thread in _arbiterThreads.Where(x => x.MutexAddress == address))
{
if (++waitingCount > count)
{
break;
}
}
if (waitingCount > 0)
{
offset = waitingCount <= count || count <= 0 ? -1 : 0;
}
else
{
offset = 1;
}
KProcess currentProcess = _context.Scheduler.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int currentValue;
do
{
currentValue = valueRef;
if (currentValue != value)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (Interlocked.CompareExchange(ref valueRef, currentValue + offset, currentValue) != currentValue);
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
private void WakeArbiterThreads(ulong address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
foreach (KThread thread in _arbiterThreads.Where(x => x.MutexAddress == address))
{
signaledThreads.Enqueue(thread);
// If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
thread.SignaledObj = null;
thread.ObjSyncResult = KernelResult.Success;
thread.ReleaseAndResume();
thread.WaitingInArbitration = false;
_arbiterThreads.Remove(thread);
}
}
}
}