1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2025-01-02 09:46:01 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/Engine/Threed/SpecializationStateUpdater.cs
riperiperi 8fa248ceb4
Vulkan: Add workarounds for MoltenVK (#4202)
* Add MVK basics.

* Use appropriate output attribute types

* 4kb vertex alignment, bunch of fixes

* Add reduced shader precision mode for mvk.

* Disable ASTC on MVK for now

* Only request robustnes2 when it is available.

* It's just the one feature actually

* Add triangle fan conversion

* Allow NullDescriptor on MVK for some reason.

* Force safe blit on MoltenVK

* Use ASTC only when formats are all available.

* Disable multilevel 3d texture views

* Filter duplicate render targets (on backend)

* Add Automatic MoltenVK Configuration

* Do not create color attachment views with formats that are not RT compatible

* Make sure that the host format matches the vertex shader input types for invalid/unknown guest formats

* FIx rebase for Vertex Attrib State

* Fix 4b alignment for vertex

* Use asynchronous queue submits for MVK

* Ensure color clear shader has correct output type

* Update MoltenVK config

* Always use MoltenVK workarounds on MacOS

* Make MVK supersede all vendors

* Fix rebase

* Various fixes on rebase

* Get portability flags from extension

* Fix some minor rebasing issues

* Style change

* Use LibraryImport for MVKConfiguration

* Rename MoltenVK vendor to Apple

Intel and AMD GPUs on moltenvk report with the those vendors - only apple silicon reports with vendor 0x106B.

* Fix features2 rebase conflict

* Rename fragment output type

* Add missing check for fragment output types

Might have caused the crash in MK8

* Only do fragment output specialization on MoltenVK

* Avoid copy when passing capabilities

* Self feedback

* Address feedback

Co-authored-by: gdk <gab.dark.100@gmail.com>
Co-authored-by: nastys <nastys@users.noreply.github.com>
2023-01-13 01:31:21 +01:00

332 lines
10 KiB
C#

using Ryujinx.Common.Memory;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.Types;
using Ryujinx.Graphics.Gpu.Shader;
using Ryujinx.Graphics.Shader;
namespace Ryujinx.Graphics.Gpu.Engine.Threed
{
/// <summary>
/// Maintains a "current" specialiation state, and provides a flag to check if it has changed meaningfully.
/// </summary>
internal class SpecializationStateUpdater
{
private readonly GpuContext _context;
private GpuChannelGraphicsState _graphics;
private GpuChannelPoolState _pool;
private bool _usesDrawParameters;
private bool _usesTopology;
private bool _changed;
/// <summary>
/// Creates a new instance of the specialization state updater class.
/// </summary>
/// <param name="context">GPU context</param>
public SpecializationStateUpdater(GpuContext context)
{
_context = context;
}
/// <summary>
/// Signal that the specialization state has changed.
/// </summary>
private void Signal()
{
_changed = true;
}
/// <summary>
/// Checks if the specialization state has changed since the last check.
/// </summary>
/// <returns>True if it has changed, false otherwise</returns>
public bool HasChanged()
{
if (_changed)
{
_changed = false;
return true;
}
else
{
return false;
}
}
/// <summary>
/// Sets the active shader, clearing the dirty state and recording if certain specializations are noteworthy.
/// </summary>
/// <param name="gs">The active shader</param>
public void SetShader(CachedShaderProgram gs)
{
_usesDrawParameters = gs.Shaders[1]?.Info.UsesDrawParameters ?? false;
_usesTopology = gs.SpecializationState.IsPrimitiveTopologyQueried();
_changed = false;
}
/// <summary>
/// Get the current graphics state.
/// </summary>
/// <returns>GPU graphics state</returns>
public ref GpuChannelGraphicsState GetGraphicsState()
{
return ref _graphics;
}
/// <summary>
/// Get the current pool state.
/// </summary>
/// <returns>GPU pool state</returns>
public ref GpuChannelPoolState GetPoolState()
{
return ref _pool;
}
/// <summary>
/// Early Z force enable.
/// </summary>
/// <param name="value">The new value</param>
public void SetEarlyZForce(bool value)
{
_graphics.EarlyZForce = value;
Signal();
}
/// <summary>
/// Primitive topology of current draw.
/// </summary>
/// <param name="value">The new value</param>
public void SetTopology(PrimitiveTopology value)
{
if (value != _graphics.Topology)
{
_graphics.Topology = value;
if (_usesTopology)
{
Signal();
}
}
}
/// <summary>
/// Tessellation mode.
/// </summary>
/// <param name="value">The new value</param>
public void SetTessellationMode(TessMode value)
{
if (value.Packed != _graphics.TessellationMode.Packed)
{
_graphics.TessellationMode = value;
Signal();
}
}
/// <summary>
/// Updates alpha-to-coverage state, and sets it as changed.
/// </summary>
/// <param name="enable">Whether alpha-to-coverage is enabled</param>
/// <param name="ditherEnable">Whether alpha-to-coverage dithering is enabled</param>
public void SetAlphaToCoverageEnable(bool enable, bool ditherEnable)
{
_graphics.AlphaToCoverageEnable = enable;
_graphics.AlphaToCoverageDitherEnable = ditherEnable;
Signal();
}
/// <summary>
/// Indicates whether the viewport transform is disabled.
/// </summary>
/// <param name="value">The new value</param>
public void SetViewportTransformDisable(bool value)
{
if (value != _graphics.ViewportTransformDisable)
{
_graphics.ViewportTransformDisable = value;
Signal();
}
}
/// <summary>
/// Depth mode zero to one or minus one to one.
/// </summary>
/// <param name="value">The new value</param>
public void SetDepthMode(bool value)
{
if (value != _graphics.DepthMode)
{
_graphics.DepthMode = value;
Signal();
}
}
/// <summary>
/// Indicates if the point size is set on the shader or is fixed.
/// </summary>
/// <param name="value">The new value</param>
public void SetProgramPointSizeEnable(bool value)
{
if (value != _graphics.ProgramPointSizeEnable)
{
_graphics.ProgramPointSizeEnable = value;
Signal();
}
}
/// <summary>
/// Point size used if <see cref="SetProgramPointSizeEnable" /> is provided false.
/// </summary>
/// <param name="value">The new value</param>
public void SetPointSize(float value)
{
if (value != _graphics.PointSize)
{
_graphics.PointSize = value;
Signal();
}
}
/// <summary>
/// Updates alpha test specialization state, and sets it as changed.
/// </summary>
/// <param name="enable">Whether alpha test is enabled</param>
/// <param name="reference">The value to compare with the fragment output alpha</param>
/// <param name="op">The comparison that decides if the fragment should be discarded</param>
public void SetAlphaTest(bool enable, float reference, CompareOp op)
{
_graphics.AlphaTestEnable = enable;
_graphics.AlphaTestReference = reference;
_graphics.AlphaTestCompare = op;
Signal();
}
/// <summary>
/// Updates the type of the vertex attributes consumed by the shader.
/// </summary>
/// <param name="state">The new state</param>
public void SetAttributeTypes(ref Array32<VertexAttribState> state)
{
bool changed = false;
ref Array32<AttributeType> attributeTypes = ref _graphics.AttributeTypes;
for (int location = 0; location < state.Length; location++)
{
VertexAttribType type = state[location].UnpackType();
AttributeType value = type switch
{
VertexAttribType.Sint => AttributeType.Sint,
VertexAttribType.Uint => AttributeType.Uint,
_ => AttributeType.Float
};
if (attributeTypes[location] != value)
{
attributeTypes[location] = value;
changed = true;
}
}
if (changed)
{
Signal();
}
}
/// <summary>
/// Updates the type of the outputs produced by the fragment shader based on the current render target state.
/// </summary>
/// <param name="rtControl">The render target control register</param>
/// <param name="state">The color attachment state</param>
public void SetFragmentOutputTypes(RtControl rtControl, ref Array8<RtColorState> state)
{
bool changed = false;
int count = rtControl.UnpackCount();
for (int index = 0; index < Constants.TotalRenderTargets; index++)
{
int rtIndex = rtControl.UnpackPermutationIndex(index);
var colorState = state[rtIndex];
if (index < count && StateUpdater.IsRtEnabled(colorState))
{
Format format = colorState.Format.Convert().Format;
AttributeType type = format.IsInteger() ? (format.IsSint() ? AttributeType.Sint : AttributeType.Uint) : AttributeType.Float;
if (type != _graphics.FragmentOutputTypes[index])
{
_graphics.FragmentOutputTypes[index] = type;
changed = true;
}
}
}
if (changed && _context.Capabilities.NeedsFragmentOutputSpecialization)
{
Signal();
}
}
/// <summary>
/// Indicates that the draw is writing the base vertex, base instance and draw index to Constant Buffer 0.
/// </summary>
/// <param name="value">The new value</param>
public void SetHasConstantBufferDrawParameters(bool value)
{
if (value != _graphics.HasConstantBufferDrawParameters)
{
_graphics.HasConstantBufferDrawParameters = value;
if (_usesDrawParameters)
{
Signal();
}
}
}
/// <summary>
/// Indicates that any storage buffer use is unaligned.
/// </summary>
/// <param name="value">The new value</param>
/// <returns>True if the unaligned state changed, false otherwise</returns>
public bool SetHasUnalignedStorageBuffer(bool value)
{
if (value != _graphics.HasUnalignedStorageBuffer)
{
_graphics.HasUnalignedStorageBuffer = value;
Signal();
return true;
}
return false;
}
/// <summary>
/// Sets the GPU pool state.
/// </summary>
/// <param name="state">The new state</param>
public void SetPoolState(GpuChannelPoolState state)
{
if (!state.Equals(_pool))
{
_pool = state;
Signal();
}
}
}
}