1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2025-01-22 00:27:07 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Threading/KAddressArbiter.cs
Alex Barney b2b736abc2 Misc cleanup (#708)
* Fix typos

* Remove unneeded using statements

* Enforce var style more

* Remove redundant qualifiers

* Fix some indentation

* Disable naming warnings on files with external enum names

* Fix build

* Mass find & replace for comments with no spacing

* Standardize todo capitalization and for/if spacing
2019-07-02 04:39:22 +02:00

595 lines
18 KiB
C#

using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using System.Collections.Generic;
using System.Linq;
namespace Ryujinx.HLE.HOS.Kernel.Threading
{
class KAddressArbiter
{
private const int HasListenersMask = 0x40000000;
private Horizon _system;
public List<KThread> CondVarThreads;
public List<KThread> ArbiterThreads;
public KAddressArbiter(Horizon system)
{
_system = system;
CondVarThreads = new List<KThread>();
ArbiterThreads = new List<KThread>();
}
public KernelResult ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.Success;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_system, mutexAddress, out int mutexValue))
{
_system.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (mutexValue != (ownerHandle | HasListenersMask))
{
_system.CriticalSection.Leave();
return 0;
}
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
if (mutexOwner == null)
{
_system.CriticalSection.Leave();
return KernelResult.InvalidHandle;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = requesterHandle;
mutexOwner.AddMutexWaiter(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
_system.CriticalSection.Leave();
_system.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_system.CriticalSection.Leave();
return (KernelResult)currentThread.ObjSyncResult;
}
public KernelResult ArbitrateUnlock(ulong mutexAddress)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
(KernelResult result, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
if (result != KernelResult.Success && newOwnerThread != null)
{
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = result;
}
_system.CriticalSection.Leave();
return result;
}
public KernelResult WaitProcessWideKeyAtomic(
ulong mutexAddress,
ulong condVarAddress,
int threadHandle,
long timeout)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
(KernelResult result, _) = MutexUnlock(currentThread, mutexAddress);
if (result != KernelResult.Success)
{
_system.CriticalSection.Leave();
return result;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = threadHandle;
currentThread.CondVarAddress = condVarAddress;
CondVarThreads.Add(currentThread);
if (timeout != 0)
{
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
CondVarThreads.Remove(currentThread);
_system.CriticalSection.Leave();
return (KernelResult)currentThread.ObjSyncResult;
}
private (KernelResult, KThread) MutexUnlock(KThread currentThread, ulong mutexAddress)
{
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
int mutexValue = 0;
if (newOwnerThread != null)
{
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
if (count >= 2)
{
mutexValue |= HasListenersMask;
}
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = KernelResult.Success;
newOwnerThread.ReleaseAndResume();
}
KernelResult result = KernelResult.Success;
if (!KernelTransfer.KernelToUserInt32(_system, mutexAddress, mutexValue))
{
result = KernelResult.InvalidMemState;
}
return (result, newOwnerThread);
}
public void SignalProcessWideKey(ulong address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
_system.CriticalSection.Enter();
IOrderedEnumerable<KThread> sortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority);
foreach (KThread thread in sortedThreads.Where(x => x.CondVarAddress == address))
{
TryAcquireMutex(thread);
signaledThreads.Enqueue(thread);
// If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
CondVarThreads.Remove(thread);
}
_system.CriticalSection.Leave();
}
private KThread TryAcquireMutex(KThread requester)
{
ulong address = requester.MutexAddress;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
int mutexValue, newMutexValue;
do
{
if (!KernelTransfer.UserToKernelInt32(_system, address, out mutexValue))
{
// Invalid address.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidMemState;
return null;
}
if (mutexValue != 0)
{
// Update value to indicate there is a mutex waiter now.
newMutexValue = mutexValue | HasListenersMask;
}
else
{
// No thread owning the mutex, assign to requesting thread.
newMutexValue = requester.ThreadHandleForUserMutex;
}
}
while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, mutexValue, newMutexValue));
if (mutexValue == 0)
{
// We now own the mutex.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.Success;
requester.ReleaseAndResume();
return null;
}
mutexValue &= ~HasListenersMask;
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
if (mutexOwner != null)
{
// Mutex already belongs to another thread, wait for it.
mutexOwner.AddMutexWaiter(requester);
}
else
{
// Invalid mutex owner.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidHandle;
requester.ReleaseAndResume();
}
return mutexOwner;
}
public KernelResult WaitForAddressIfEqual(ulong address, int value, long timeout)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (currentValue == value)
{
if (timeout == 0)
{
_system.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_system.CriticalSection.Leave();
return (KernelResult)currentThread.ObjSyncResult;
}
_system.CriticalSection.Leave();
return KernelResult.InvalidState;
}
public KernelResult WaitForAddressIfLessThan(
ulong address,
int value,
bool shouldDecrement,
long timeout)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (shouldDecrement)
{
currentValue = currentProcess.CpuMemory.AtomicDecrementInt32((long)address) + 1;
}
if (currentValue < value)
{
if (timeout == 0)
{
_system.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_system.CriticalSection.Leave();
return (KernelResult)currentThread.ObjSyncResult;
}
_system.CriticalSection.Leave();
return KernelResult.InvalidState;
}
private void InsertSortedByPriority(List<KThread> threads, KThread thread)
{
int nextIndex = -1;
for (int index = 0; index < threads.Count; index++)
{
if (threads[index].DynamicPriority > thread.DynamicPriority)
{
nextIndex = index;
break;
}
}
if (nextIndex != -1)
{
threads.Insert(nextIndex, thread);
}
else
{
threads.Add(thread);
}
}
public KernelResult Signal(ulong address, int count)
{
_system.CriticalSection.Enter();
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndIncrementIfEqual(ulong address, int value, int count)
{
_system.CriticalSection.Enter();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
int currentValue;
do
{
if (!KernelTransfer.UserToKernelInt32(_system, address, out currentValue))
{
_system.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (currentValue != value)
{
_system.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, currentValue, currentValue + 1));
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndModifyIfEqual(ulong address, int value, int count)
{
_system.CriticalSection.Enter();
int offset;
// The value is decremented if the number of threads waiting is less
// or equal to the Count of threads to be signaled, or Count is zero
// or negative. It is incremented if there are no threads waiting.
int waitingCount = 0;
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
if (++waitingCount > count)
{
break;
}
}
if (waitingCount > 0)
{
offset = waitingCount <= count || count <= 0 ? -1 : 0;
}
else
{
offset = 1;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
int currentValue;
do
{
if (!KernelTransfer.UserToKernelInt32(_system, address, out currentValue))
{
_system.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (currentValue != value)
{
_system.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, currentValue, currentValue + offset));
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return KernelResult.Success;
}
private void WakeArbiterThreads(ulong address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
signaledThreads.Enqueue(thread);
// If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
thread.SignaledObj = null;
thread.ObjSyncResult = KernelResult.Success;
thread.ReleaseAndResume();
thread.WaitingInArbitration = false;
ArbiterThreads.Remove(thread);
}
}
}
}