/* * Copyright (c) 2018 naehrwert * Copyright (c) 2019-2020 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "../soc/uart.h" #include "../soc/clock.h" #include "../soc/t210.h" #include "../utils/util.h" /* UART A, B, C, D and E. */ static const u32 uart_baseoff[5] = { 0, 0x40, 0x200, 0x300, 0x400 }; void uart_init(u32 idx, u32 baud) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); // Make sure no data is being sent. uart_wait_idle(idx, UART_TX_IDLE); // Set clock. bool clk_type = clock_uart_use_src_div(idx, baud); // Misc settings. u32 div = clk_type ? ((8 * baud + 408000000) / (16 * baud)) : 1; // DIV_ROUND_CLOSEST. uart->UART_IER_DLAB = 0; // Disable interrupts. uart->UART_LCR = UART_LCR_DLAB | UART_LCR_WORD_LENGTH_8; // Enable DLAB & set 8n1 mode. uart->UART_THR_DLAB = (u8)div; // Divisor latch LSB. uart->UART_IER_DLAB = (u8)(div >> 8); // Divisor latch MSB. uart->UART_LCR = UART_LCR_WORD_LENGTH_8; // Disable DLAB. (void)uart->UART_SPR; // Setup and flush fifo. uart->UART_IIR_FCR = UART_IIR_FCR_EN_FIFO; (void)uart->UART_SPR; usleep(20); uart->UART_MCR = 0; // Disable hardware flow control. usleep(96); uart->UART_IIR_FCR = UART_IIR_FCR_EN_FIFO | UART_IIR_FCR_TX_CLR | UART_IIR_FCR_RX_CLR; // Wait 3 symbols for baudrate change. usleep(3 * ((baud + 999999) / baud)); uart_wait_idle(idx, UART_TX_IDLE | UART_RX_IDLE); } void uart_wait_idle(u32 idx, u32 which) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); if (UART_TX_IDLE & which) { while (!(uart->UART_LSR & UART_LSR_TMTY)) ; } if (UART_RX_IDLE & which) { while (uart->UART_LSR & UART_LSR_RDR) ; } } void uart_send(u32 idx, const u8 *buf, u32 len) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); for (u32 i = 0; i != len; i++) { while (!(uart->UART_LSR & UART_LSR_THRE)) ; uart->UART_THR_DLAB = buf[i]; }; } u32 uart_recv(u32 idx, u8 *buf, u32 len) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); u32 timeout = get_tmr_us() + 1000; u32 i; for (i = 0; ; i++) { while (!(uart->UART_LSR & UART_LSR_RDR)) { if (!len) { if (timeout < get_tmr_us()) break; } else if (len < i) break; } if (timeout < get_tmr_us()) break; buf[i] = uart->UART_THR_DLAB; timeout = get_tmr_us() + 1000; }; return i ? (len ? (i - 1) : i) : 0; } void uart_invert(u32 idx, bool enable, u32 invert_mask) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); if (enable) uart->UART_IRDA_CSR |= invert_mask; else uart->UART_IRDA_CSR &= ~invert_mask; (void)uart->UART_SPR; } u32 uart_get_IIR(u32 idx) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); return uart->UART_IIR_FCR; } void uart_set_IIR(u32 idx) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); uart->UART_IER_DLAB &= ~UART_IER_DLAB_IE_EORD; (void)uart->UART_SPR; uart->UART_IER_DLAB |= UART_IER_DLAB_IE_EORD; (void)uart->UART_SPR; } void uart_empty_fifo(u32 idx, u32 which) { uart_t *uart = (uart_t *)(UART_BASE + uart_baseoff[idx]); uart->UART_MCR = 0; (void)uart->UART_SPR; usleep(96); uart->UART_IIR_FCR = UART_IIR_FCR_EN_FIFO | UART_IIR_FCR_TX_CLR | UART_IIR_FCR_RX_CLR; (void)uart->UART_SPR; usleep(18); u32 tries = 0; if (UART_IIR_FCR_TX_CLR & which) { while (tries < 10 && uart->UART_LSR & UART_LSR_TMTY) { tries++; usleep(100); } tries = 0; } if (UART_IIR_FCR_RX_CLR & which) { while (tries < 10 && !uart->UART_LSR & UART_LSR_RDR) { tries++; usleep(100); } } }