1
0
Fork 0
mirror of https://github.com/suchmememanyskill/TegraExplorer.git synced 2024-12-27 03:46:02 +00:00
TegraExplorer/bdk/libs/lvgl/lv_misc/lv_mem.c
SuchMemeManySkill d6c4204027 Start of rewrite
Based on lockpick_rcm 1.9.0
2020-12-23 17:39:22 +01:00

470 lines
12 KiB
C

/*
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file lv_mem.c
* General and portable implementation of malloc and free.
* The dynamic memory monitoring is also supported.
*/
/*********************
* INCLUDES
*********************/
#include "lv_mem.h"
#include "lv_math.h"
#include <string.h>
#include <assert.h>
#if LV_MEM_CUSTOM != 0
#include LV_MEM_CUSTOM_INCLUDE
#endif
/*********************
* DEFINES
*********************/
#define LV_MEM_ADD_JUNK 0 /*Add memory junk on alloc (0xaa) and free(0xbb) (just for testing purposes)*/
#ifdef LV_MEM_ENV64
# define MEM_UNIT uint64_t
#else
# define MEM_UNIT uint32_t
#endif
/**********************
* TYPEDEFS
**********************/
#if LV_ENABLE_GC == 0 /*gc custom allocations must not include header*/
/*The size of this union must be 32 bytes (uint32_t * 8)*/
typedef union {
struct {
MEM_UNIT used: 1; //1: if the entry is used
MEM_UNIT d_size: 31; //Size of the data
};
MEM_UNIT header; //The header (used + d_size)
MEM_UNIT align[8]; //Align header size to MEM_UNIT * 8 bytes
} lv_mem_header_t;
static_assert(sizeof(lv_mem_header_t) == 32, "Node header must be 32 bytes!");
typedef struct {
lv_mem_header_t header;
uint8_t first_data; /*First data byte in the allocated data (Just for easily create a pointer)*/
} lv_mem_ent_t;
#endif /* LV_ENABLE_GC */
/**********************
* STATIC PROTOTYPES
**********************/
#if LV_MEM_CUSTOM == 0
static lv_mem_ent_t * ent_get_next(lv_mem_ent_t * act_e);
static void * ent_alloc(lv_mem_ent_t * e, uint32_t size);
static void ent_trunc(lv_mem_ent_t * e, uint32_t size);
#endif
/**********************
* STATIC VARIABLES
**********************/
#if LV_MEM_CUSTOM == 0
static uint8_t * work_mem;
#endif
static uint32_t zero_mem; /*Give the address of this variable if 0 byte should be allocated*/
/**********************
* MACROS
**********************/
/**********************
* GLOBAL FUNCTIONS
**********************/
/**
* Initiaiize the dyn_mem module (work memory and other variables)
*/
void lv_mem_init(void)
{
#if LV_MEM_CUSTOM == 0
#if LV_MEM_ADR == 0
/*Allocate a large array to store the dynamically allocated data*/
static LV_MEM_ATTR MEM_UNIT work_mem_int[LV_MEM_SIZE / sizeof(MEM_UNIT)];
work_mem = (uint8_t *) work_mem_int;
#else
work_mem = (uint8_t *) LV_MEM_ADR;
#endif
lv_mem_ent_t * full = (lv_mem_ent_t *)work_mem;
full->header.used = 0;
/*The total mem size id reduced by the first header and the close patterns */
full->header.d_size = LV_MEM_SIZE - sizeof(lv_mem_header_t);
#endif
}
/**
* Allocate a memory dynamically
* @param size size of the memory to allocate in bytes
* @return pointer to the allocated memory
*/
void * lv_mem_alloc(uint32_t size)
{
if(size == 0) {
return &zero_mem;
}
/*Round the size to lv_mem_header_t*/
if(size & (sizeof(lv_mem_header_t) - 1)) {
size = size & (~(sizeof(lv_mem_header_t) - 1));
size += sizeof(lv_mem_header_t);
}
void * alloc = NULL;
#if LV_MEM_CUSTOM == 0 /*Use the allocation from dyn_mem*/
lv_mem_ent_t * e = NULL;
//Search for a appropriate entry
do {
//Get the next entry
e = ent_get_next(e);
/*If there is next entry then try to allocate there*/
if(e != NULL) {
alloc = ent_alloc(e, size);
}
//End if there is not next entry OR the alloc. is successful
} while(e != NULL && alloc == NULL);
#else /*Use custom, user defined malloc function*/
#if LV_ENABLE_GC == 1 /*gc must not include header*/
alloc = LV_MEM_CUSTOM_ALLOC(size);
#else /* LV_ENABLE_GC */
/*Allocate a header too to store the size*/
alloc = LV_MEM_CUSTOM_ALLOC(size + sizeof(lv_mem_header_t));
if(alloc != NULL) {
((lv_mem_ent_t *) alloc)->header.d_size = size;
((lv_mem_ent_t *) alloc)->header.used = 1;
alloc = &((lv_mem_ent_t *) alloc)->first_data;
}
#endif /* LV_ENABLE_GC */
#endif /* LV_MEM_CUSTOM */
#if LV_MEM_ADD_JUNK
if(alloc != NULL) memset(alloc, 0xaa, size);
#endif
if(alloc == NULL) LV_LOG_WARN("Couldn't allocate memory");
return alloc;
}
/**
* Free an allocated data
* @param data pointer to an allocated memory
*/
void lv_mem_free(const void * data)
{
if(data == &zero_mem) return;
if(data == NULL) return;
#if LV_MEM_ADD_JUNK
memset((void *)data, 0xbb, lv_mem_get_size(data));
#endif
#if LV_ENABLE_GC==0
/*e points to the header*/
lv_mem_ent_t * e = (lv_mem_ent_t *)((uint8_t *) data - sizeof(lv_mem_header_t));
e->header.used = 0;
#endif
#if LV_MEM_CUSTOM == 0
#if LV_MEM_AUTO_DEFRAG
/* Make a simple defrag.
* Join the following free entries after this*/
lv_mem_ent_t * e_next;
e_next = ent_get_next(e);
while(e_next != NULL) {
if(e_next->header.used == 0) {
e->header.d_size += e_next->header.d_size + sizeof(e->header);
} else {
break;
}
e_next = ent_get_next(e_next);
}
#endif
#else /*Use custom, user defined free function*/
#if LV_ENABLE_GC==0
LV_MEM_CUSTOM_FREE(e);
#else
LV_MEM_CUSTOM_FREE((void*)data);
#endif /*LV_ENABLE_GC*/
#endif
}
/**
* Reallocate a memory with a new size. The old content will be kept.
* @param data pointer to an allocated memory.
* Its content will be copied to the new memory block and freed
* @param new_size the desired new size in byte
* @return pointer to the new memory
*/
#if LV_ENABLE_GC==0
void * lv_mem_realloc(void * data_p, uint32_t new_size)
{
/*Round the size to lv_mem_header_t*/
if(new_size & (sizeof(lv_mem_header_t) - 1)) {
new_size = new_size & (~(sizeof(lv_mem_header_t) - 1));
new_size += sizeof(lv_mem_header_t);
}
/*data_p could be previously freed pointer (in this case it is invalid)*/
if(data_p != NULL) {
lv_mem_ent_t * e = (lv_mem_ent_t *)((uint8_t *) data_p - sizeof(lv_mem_header_t));
if(e->header.used == 0) {
data_p = NULL;
}
}
uint32_t old_size = lv_mem_get_size(data_p);
if(old_size == new_size) return data_p; /*Also avoid reallocating the same memory*/
#if LV_MEM_CUSTOM == 0
/* Only truncate the memory is possible
* If the 'old_size' was extended by a header size in 'ent_trunc' it avoids reallocating this same memory */
if(new_size < old_size) {
lv_mem_ent_t * e = (lv_mem_ent_t *)((uint8_t *) data_p - sizeof(lv_mem_header_t));
ent_trunc(e, new_size);
return &e->first_data;
}
#endif
void * new_p;
new_p = lv_mem_alloc(new_size);
if(new_p != NULL && data_p != NULL) {
/*Copy the old data to the new. Use the smaller size*/
if(old_size != 0) {
memcpy(new_p, data_p, LV_MATH_MIN(new_size, old_size));
lv_mem_free(data_p);
}
}
if(new_p == NULL) LV_LOG_WARN("Couldn't allocate memory");
return new_p;
}
#else /* LV_ENABLE_GC */
void * lv_mem_realloc(void * data_p, uint32_t new_size)
{
void * new_p = LV_MEM_CUSTOM_REALLOC(data_p, new_size);
if(new_p == NULL) LV_LOG_WARN("Couldn't allocate memory");
return new_p;
}
#endif /* lv_enable_gc */
/**
* Join the adjacent free memory blocks
*/
void lv_mem_defrag(void)
{
#if LV_MEM_CUSTOM == 0
lv_mem_ent_t * e_free;
lv_mem_ent_t * e_next;
e_free = ent_get_next(NULL);
while(1) {
/*Search the next free entry*/
while(e_free != NULL) {
if(e_free->header.used != 0) {
e_free = ent_get_next(e_free);
} else {
break;
}
}
if(e_free == NULL) return;
/*Joint the following free entries to the free*/
e_next = ent_get_next(e_free);
while(e_next != NULL) {
if(e_next->header.used == 0) {
e_free->header.d_size += e_next->header.d_size + sizeof(e_next->header);
} else {
break;
}
e_next = ent_get_next(e_next);
}
if(e_next == NULL) return;
/*Continue from the lastly checked entry*/
e_free = e_next;
}
#endif
}
/**
* Give information about the work memory of dynamic allocation
* @param mon_p pointer to a dm_mon_p variable,
* the result of the analysis will be stored here
*/
void lv_mem_monitor(lv_mem_monitor_t * mon_p)
{
/*Init the data*/
memset(mon_p, 0, sizeof(lv_mem_monitor_t));
#if LV_MEM_CUSTOM == 0
lv_mem_ent_t * e;
e = NULL;
e = ent_get_next(e);
while(e != NULL) {
if(e->header.used == 0) {
mon_p->free_cnt++;
mon_p->free_size += e->header.d_size;
if(e->header.d_size > mon_p->free_biggest_size) {
mon_p->free_biggest_size = e->header.d_size;
}
} else {
mon_p->used_cnt++;
}
e = ent_get_next(e);
}
mon_p->total_size = LV_MEM_SIZE;
mon_p->used_pct = 100 - ((uint64_t)100U * mon_p->free_size) / mon_p->total_size;
mon_p->frag_pct = (uint32_t)mon_p->free_biggest_size * 100U / mon_p->free_size;
mon_p->frag_pct = 100 - mon_p->frag_pct;
#endif
}
/**
* Give the size of an allocated memory
* @param data pointer to an allocated memory
* @return the size of data memory in bytes
*/
#if LV_ENABLE_GC==0
uint32_t lv_mem_get_size(const void * data)
{
if(data == NULL) return 0;
if(data == &zero_mem) return 0;
lv_mem_ent_t * e = (lv_mem_ent_t *)((uint8_t *) data - sizeof(lv_mem_header_t));
return e->header.d_size;
}
#else /* LV_ENABLE_GC */
uint32_t lv_mem_get_size(const void * data)
{
return LV_MEM_CUSTOM_GET_SIZE(data);
}
#endif /*LV_ENABLE_GC*/
/**********************
* STATIC FUNCTIONS
**********************/
#if LV_MEM_CUSTOM == 0
/**
* Give the next entry after 'act_e'
* @param act_e pointer to an entry
* @return pointer to an entry after 'act_e'
*/
static lv_mem_ent_t * ent_get_next(lv_mem_ent_t * act_e)
{
lv_mem_ent_t * next_e = NULL;
if(act_e == NULL) { /*NULL means: get the first entry*/
next_e = (lv_mem_ent_t *) work_mem;
} else { /*Get the next entry */
uint8_t * data = &act_e->first_data;
next_e = (lv_mem_ent_t *)&data[act_e->header.d_size];
if(&next_e->first_data >= &work_mem[LV_MEM_SIZE]) next_e = NULL;
}
return next_e;
}
/**
* Try to do the real allocation with a given size
* @param e try to allocate to this entry
* @param size size of the new memory in bytes
* @return pointer to the allocated memory or NULL if not enough memory in the entry
*/
static void * ent_alloc(lv_mem_ent_t * e, uint32_t size)
{
void * alloc = NULL;
/*If the memory is free and big enough then use it */
if(e->header.used == 0 && e->header.d_size >= size) {
/*Truncate the entry to the desired size */
ent_trunc(e, size),
e->header.used = 1;
/*Save the allocated data*/
alloc = &e->first_data;
}
return alloc;
}
/**
* Truncate the data of entry to the given size
* @param e Pointer to an entry
* @param size new size in bytes
*/
static void ent_trunc(lv_mem_ent_t * e, uint32_t size)
{
/*Don't let empty space only for a header without data*/
if(e->header.d_size == size + sizeof(lv_mem_header_t)) {
size = e->header.d_size;
}
/* Create the new entry after the current if there is space for it */
if(e->header.d_size != size) {
uint8_t * e_data = &e->first_data;
lv_mem_ent_t * after_new_e = (lv_mem_ent_t *)&e_data[size];
after_new_e->header.used = 0;
after_new_e->header.d_size = e->header.d_size - size - sizeof(lv_mem_header_t);
}
/* Set the new size for the original entry */
e->header.d_size = size;
}
#endif