1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-01 08:21:45 +00:00
hekate/bootloader/soc/bpmp.c

219 lines
7 KiB
C
Raw Normal View History

2019-06-30 01:55:19 +01:00
/*
2019-07-06 20:08:37 +01:00
* BPMP-Lite Cache/MMU and Frequency driver for Tegra X1
2019-06-30 01:55:19 +01:00
*
* Copyright (c) 2019 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "bpmp.h"
#include "clock.h"
#include "t210.h"
#include "../utils/util.h"
#define BPMP_CACHE_CONFIG 0x0
#define CFG_ENABLE (1 << 0)
#define CFG_FORCE_WRITE_THROUGH (1 << 3)
#define CFG_DISABLE_WRITE_BUFFER (1 << 10)
#define CFG_DISABLE_READ_BUFFER (1 << 11)
#define CFG_FULL_LINE_DIRTY (1 << 13)
#define CFG_TAG_CHK_ABRT_ON_ERR (1 << 14)
#define BPMP_CACHE_LOCK 0x4
#define BPMP_CACHE_SIZE 0xC
#define BPMP_CACHE_LFSR 0x10
#define BPMP_CACHE_TAG_STATUS 0x14
#define BPMP_CACHE_CLKEN_OVERRIDE 0x18
#define BPMP_CACHE_MAINT_ADDR 0x20
#define BPMP_CACHE_MAINT_DATA 0x24
#define BPMP_CACHE_MAINT_REQ 0x28
#define MAINT_REQ_WAY_BITMAP(x) ((x) << 8)
#define BPMP_CACHE_INT_MASK 0x40
#define BPMP_CACHE_INT_CLEAR 0x44
#define INT_CLR_MAINT_DONE (1 << 0)
#define BPMP_CACHE_INT_RAW_EVENT 0x48
#define INT_RAW_EVENT_MAINT_DONE (1 << 0)
#define BPMP_CACHE_INT_STATUS 0x4C
#define BPMP_CACHE_RB_CFG 0x80
#define BPMP_CACHE_WB_CFG 0x84
#define BPMP_CACHE_MMU_FALLBACK_ENTRY 0xA0
#define BPMP_CACHE_MMU_SHADOW_COPY_MASK 0xA4
#define BPMP_CACHE_MMU_CFG 0xAC
#define MMU_CFG_SEQ_EN (1 << 1)
#define MMU_CFG_TLB_EN (1 << 2)
#define MMU_CFG_ABORT_STORE_LAST (1 << 4)
#define BPMP_CACHE_MMU_CMD 0xB0
#define MMU_CMD_NOP 0
#define MMU_CMD_INIT 1
#define MMU_CMD_COPY_SHADOW 2
#define BPMP_CACHE_MMU_ABORT_STAT 0xB4
#define BPMP_CACHE_MMU_ABORT_ADDR 0xB8
#define BPMP_CACHE_MMU_ACTIVE_ENTRIES 0xBC
#define BPMP_MMU_SHADOW_ENTRY_BASE (BPMP_CACHE_BASE + 0x400)
#define BPMP_MMU_MAIN_ENTRY_BASE (BPMP_CACHE_BASE + 0x800)
#define MMU_ENTRY_ADDR_MASK 0xFFFFFFE0
#define MMU_EN_CACHED (1 << 0)
#define MMU_EN_EXEC (1 << 1)
#define MMU_EN_READ (1 << 2)
#define MMU_EN_WRITE (1 << 3)
bpmp_mmu_entry_t mmu_entries[] =
{
{ 0x80000000, 0xFFFFFFFF, MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC | MMU_EN_CACHED, true },
{ IPL_LOAD_ADDR, 0x40040000, MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC | MMU_EN_CACHED, true }
};
void bpmp_mmu_maintenance(u32 op)
{
if (!(BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE))
return;
BPMP_CACHE_CTRL(BPMP_CACHE_INT_CLEAR) = INT_CLR_MAINT_DONE;
2019-06-30 01:55:19 +01:00
// This is a blocking operation.
BPMP_CACHE_CTRL(BPMP_CACHE_MAINT_REQ) = MAINT_REQ_WAY_BITMAP(0xF) | op;
while(!(BPMP_CACHE_CTRL(BPMP_CACHE_INT_RAW_EVENT) & INT_RAW_EVENT_MAINT_DONE))
;
2019-06-30 01:55:19 +01:00
BPMP_CACHE_CTRL(BPMP_CACHE_INT_CLEAR) = BPMP_CACHE_CTRL(BPMP_CACHE_INT_RAW_EVENT);
2019-06-30 01:55:19 +01:00
}
void bpmp_mmu_set_entry(int idx, bpmp_mmu_entry_t *entry, bool apply)
{
if (idx > 31)
return;
volatile bpmp_mmu_entry_t *mmu_entry = (bpmp_mmu_entry_t *)(BPMP_MMU_SHADOW_ENTRY_BASE + sizeof(bpmp_mmu_entry_t) * idx);
if (entry->enable)
{
mmu_entry->min_addr = entry->min_addr & MMU_ENTRY_ADDR_MASK;
mmu_entry->max_addr = entry->max_addr & MMU_ENTRY_ADDR_MASK;
mmu_entry->attr = entry->attr;
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_SHADOW_COPY_MASK) |= (1 << idx);
if (apply)
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_COPY_SHADOW;
}
}
void bpmp_mmu_enable()
{
if (BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE)
return;
// Init BPMP MMU.
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_INIT;
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_FALLBACK_ENTRY) = MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC; // RWX for non-defined regions.
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CFG) = MMU_CFG_SEQ_EN | MMU_CFG_TLB_EN | MMU_CFG_ABORT_STORE_LAST;
// Init BPMP MMU entries.
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_SHADOW_COPY_MASK) = 0;
for (u32 idx = 0; idx < (sizeof(mmu_entries) / sizeof(bpmp_mmu_entry_t)); idx++)
bpmp_mmu_set_entry(idx, &mmu_entries[idx], false);
BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_COPY_SHADOW;
// Invalidate cache.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY);
// Enable cache.
BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) = CFG_ENABLE | CFG_FORCE_WRITE_THROUGH | CFG_TAG_CHK_ABRT_ON_ERR;
// HW bug. Invalidate cache again.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY);
}
void bpmp_mmu_disable()
{
if (!(BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE))
return;
// Clean and invalidate cache.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY);
// Enable cache.
BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) = 0;
// HW bug. Invalidate cache again.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY);
}
const u8 pllc4_divn[] = {
2019-06-30 01:55:19 +01:00
0, // BPMP_CLK_NORMAL: 408MHz 0% - 136MHz APB.
85, // BPMP_CLK_LOW_BOOST: 544MHz 33% - 136MHz APB.
90, // BPMP_CLK_MID_BOOST: 576MHz 41% - 144MHz APB.
94 // BPMP_CLK_SUPER_BOOST: 602MHz 48% - 150MHz APB.
//95 // BPMP_CLK_SUPER_BOOST: 608MHz 49% - 152MHz APB.
2019-06-30 01:55:19 +01:00
};
bpmp_freq_t bpmp_clock_set = BPMP_CLK_NORMAL;
void bpmp_clk_rate_set(bpmp_freq_t fid)
{
if (fid > (BPMP_CLK_MAX - 1))
fid = BPMP_CLK_MAX - 1;
if (bpmp_clock_set == fid)
return;
if (fid)
{
if (bpmp_clock_set)
{
// Restore to PLLP source during PLLC4 configuration.
CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) =
(CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & 0xFFFF8888) | 0x3333; // PLLP_OUT.
// Wait a bit for clock source change.
msleep(10);
}
CLOCK(CLK_RST_CONTROLLER_PLLC4_MISC) = (1 << 30);
CLOCK(CLK_RST_CONTROLLER_PLLC4_BASE) = 4 | (pllc4_divn[fid] << 8) | (1 << 30); // DIVM: 4, DIVP: 1.
while (!(CLOCK(CLK_RST_CONTROLLER_PLLC4_BASE) & (1 << 27)))
;
CLOCK(CLK_RST_CONTROLLER_PLLC4_OUT) = (1 << 8) | (1 << 1); // 1.5 div.
CLOCK(CLK_RST_CONTROLLER_PLLC4_OUT) |= 1; // Get divider out of reset.
// Wait a bit for PLLC4 to stabilize.
msleep(10);
CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 3; // PCLK = HCLK / 4.
CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) =
(CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & 0xFFFF8888) | 0x3323; // PLLC4_OUT3.
bpmp_clock_set = fid;
}
else
{
CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) =
(CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & 0xFFFF8888) | 0x3333; // PLLP_OUT.
// Wait a bit for clock source change.
msleep(10);
CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 2; // PCLK = HCLK / 3.
CLOCK(CLK_RST_CONTROLLER_PLLC4_BASE) &= ~(1<<30);
bpmp_clock_set = BPMP_CLK_NORMAL;
}
}