1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-22 18:06:40 +00:00

bis: Pull latest lockpick driver and refactor it

- Refactor various variables and functions
- Flush whole cache when full
- Allow cache to be disabled
- Add support for raw emuMMC in nyx contenxt
- Use partition names for keys (to avoid issues with different ordering)
- Add deinit function that flushes the whole cache
- Change bis lookup address
- Halve cache size to 256MB in order to support 512MB ramdisk also.

Co-Authored-By: shchmue <7903403+shchmue@users.noreply.github.com>
This commit is contained in:
CTCaer 2021-02-06 04:05:31 +02:00
parent 497bbdf3cd
commit 9e34c5995d
4 changed files with 293 additions and 128 deletions

View file

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2019 CTCaer * Copyright (c) 2019-2021 CTCaer
* *
* This program is free software; you can redistribute it and/or modify it * This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License, * under the terms and conditions of the GNU General Public License,
@ -50,6 +50,13 @@
// Virtual disk / Chainloader buffers. // Virtual disk / Chainloader buffers.
#define RAM_DISK_ADDR 0xA4000000 #define RAM_DISK_ADDR 0xA4000000
#define RAM_DISK_SZ 0x41000000 // 1040MB. #define RAM_DISK_SZ 0x41000000 // 1040MB.
#define RAM_DISK2_SZ 0x21000000 // 528MB.
// NX BIS driver sector cache.
#define NX_BIS_CACHE_ADDR 0xC5000000
#define NX_BIS_CACHE_SZ 0x10020000 // 256MB.
#define NX_BIS_LOOKUP_ADDR 0xD6000000
#define NX_BIS_LOOKUP_SZ 0xF000000 // 240MB.
// L4T Kernel Panic Storage (PSTORE). // L4T Kernel Panic Storage (PSTORE).
#define PSTORE_ADDR 0xB0000000 #define PSTORE_ADDR 0xB0000000
@ -93,10 +100,6 @@
/* --- Hole: 129MB 0xF6A00000 - 0xFEB3FFFF --- */ /* --- Hole: 129MB 0xF6A00000 - 0xFEB3FFFF --- */
#define DRAM_START2 0xFEB40000 #define DRAM_START2 0xFEB40000
// NX BIS driver sector cache.
#define NX_BIS_CACHE_ADDR 0xFEE00000
#define NX_BIS_CACHE_SZ 0x100000
// USB buffers. // USB buffers.
#define USBD_ADDR 0xFEF00000 #define USBD_ADDR 0xFEF00000
#define USB_DESCRIPTOR_ADDR 0xFEF40000 #define USB_DESCRIPTOR_ADDR 0xFEF40000

View file

@ -413,8 +413,10 @@ t210b01:;
LIST_INIT(gpt); LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &emmc_storage); nx_emmc_gpt_parse(&gpt, &emmc_storage);
emmc_part_t *cal0_part = nx_emmc_part_find(&gpt, "PRODINFO"); // check if null emmc_part_t *cal0_part = nx_emmc_part_find(&gpt, "PRODINFO"); // check if null
nx_emmc_bis_init(cal0_part); nx_emmc_bis_init(cal0_part, false, 0);
nx_emmc_bis_read(0, 0x40, cal0_buf); nx_emmc_bis_read(0, 0x40, cal0_buf);
nx_emmc_bis_end();
nx_emmc_gpt_free(&gpt);
// Clear BIS keys slots and reinstate SBK. // Clear BIS keys slots and reinstate SBK.
hos_bis_keys_clear(); hos_bis_keys_clear();

View file

@ -1,8 +1,8 @@
/* /*
* eMMC BIS driver for Nintendo Switch * eMMC BIS driver for Nintendo Switch
* *
* Copyright (c) 2019 shchmue * Copyright (c) 2019-2020 shchmue
* Copyright (c) 2019-2020 CTCaer * Copyright (c) 2019-2021 CTCaer
* *
* This program is free software; you can redistribute it and/or modify it * This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License, * under the terms and conditions of the GNU General Public License,
@ -21,48 +21,64 @@
#include <memory_map.h> #include <memory_map.h>
#include <mem/heap.h>
#include <sec/se.h> #include <sec/se.h>
#include <sec/se_t210.h>
#include "../storage/nx_emmc.h" #include "../storage/nx_emmc.h"
#include <storage/nx_sd.h>
#include <storage/sdmmc.h> #include <storage/sdmmc.h>
#include <utils/types.h> #include <utils/types.h>
#define MAX_SEC_CACHE_ENTRIES 1500 #define BIS_CLUSTER_SECTORS 32
#define BIS_CLUSTER_SIZE 16384
#define BIS_CACHE_MAX_ENTRIES 16384
#define BIS_CACHE_LOOKUP_TBL_EMPTY_ENTRY -1
typedef struct _sector_cache_t typedef struct _cluster_cache_t
{ {
u32 sector; u32 cluster_idx; // Index of the cluster in the partition.
u32 visit_cnt; bool dirty; // Has been modified without write-back flag.
u8 tweak[0x10]; u8 data[BIS_CLUSTER_SIZE]; // The cached cluster itself. Aligned to 8 bytes for DMA engine.
u8 data[0x200]; } cluster_cache_t;
u8 align[8];
} sector_cache_t;
static u8 ks_crypt = 0; typedef struct _bis_cache_t
static u8 ks_tweak = 0; {
static u32 sector_cache_cnt = 0; bool full;
bool enabled;
u32 dirty_cnt;
u32 top_idx;
u8 dma_buff[BIS_CLUSTER_SIZE]; // Aligned to 8 bytes for DMA engine.
cluster_cache_t clusters[];
} bis_cache_t;
static u8 ks_crypt = 0;
static u8 ks_tweak = 0;
static u32 emu_offset = 0;
static emmc_part_t *system_part = NULL; static emmc_part_t *system_part = NULL;
static sector_cache_t *sector_cache = (sector_cache_t *)NX_BIS_CACHE_ADDR; static u32 *cache_lookup_tbl = (u32 *)NX_BIS_LOOKUP_ADDR;
static bis_cache_t *bis_cache = (bis_cache_t *)NX_BIS_CACHE_ADDR;
static void _gf256_mul_x_le(u8 *block) static void _gf256_mul_x_le(void *block)
{ {
u8 *pdata = (u8 *)block; u32 *pdata = (u32 *)block;
u32 carry = 0; u32 carry = 0;
for (u32 i = 0; i < 0x10; i++) for (u32 i = 0; i < 4; i++)
{ {
u8 b = pdata[i]; u32 b = pdata[i];
pdata[i] = (b << 1) | carry; pdata[i] = (b << 1) | carry;
carry = b >> 7; carry = b >> 31;
} }
if (carry) if (carry)
pdata[0x0] ^= 0x87; pdata[0x0] ^= 0x87;
} }
static int _nx_aes_xts_crypt_sec(u32 ks1, u32 ks2, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u64 sec, void *dst, void *src, u32 sec_size) static int _nx_aes_xts_crypt_sec(u32 tweak_ks, u32 crypt_ks, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u64 sec, void *dst, void *src, u32 sec_size)
{ {
u8 *pdst = (u8 *)dst; u32 *pdst = (u32 *)dst;
u8 *psrc = (u8 *)src; u32 *psrc = (u32 *)src;
u32 *ptweak = (u32 *)tweak;
if (regen_tweak) if (regen_tweak)
{ {
@ -71,155 +87,298 @@ static int _nx_aes_xts_crypt_sec(u32 ks1, u32 ks2, u32 enc, u8 *tweak, bool rege
tweak[i] = sec & 0xFF; tweak[i] = sec & 0xFF;
sec >>= 8; sec >>= 8;
} }
if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak)) if (!se_aes_crypt_block_ecb(tweak_ks, 1, tweak, tweak))
return 0; return 0;
} }
// tweak_exp allows us to use a saved tweak to reduce _gf256_mul_x_le calls.
for (u32 i = 0; i < (tweak_exp << 5); i++) for (u32 i = 0; i < (tweak_exp << 5); i++)
_gf256_mul_x_le(tweak); _gf256_mul_x_le(tweak);
u8 tmp_tweak[0x10]; u8 orig_tweak[SE_KEY_128_SIZE] __attribute__((aligned(4)));
memcpy(tmp_tweak, tweak, 0x10); memcpy(orig_tweak, tweak, SE_KEY_128_SIZE);
// We are assuming a 0x10-aligned sector size in this implementation. // We are assuming a 16 sector aligned size in this implementation.
for (u32 i = 0; i < (sec_size >> 4); i++) for (u32 i = 0; i < (sec_size >> 4); i++)
{ {
for (u32 j = 0; j < 0x10; j++) for (u32 j = 0; j < 4; j++)
pdst[j] = psrc[j] ^ tweak[j]; pdst[j] = psrc[j] ^ ptweak[j];
_gf256_mul_x_le(tweak); _gf256_mul_x_le(tweak);
psrc += 0x10; psrc += 4;
pdst += 0x10; pdst += 4;
} }
se_aes_crypt_ecb(ks2, enc, dst, sec_size, src, sec_size); if (!se_aes_crypt_ecb(crypt_ks, enc, dst, sec_size, dst, sec_size))
return 0;
memcpy(tweak, tmp_tweak, 0x10); pdst = (u32 *)dst;
ptweak = (u32 *)orig_tweak;
pdst = (u8 *)dst;
for (u32 i = 0; i < (sec_size >> 4); i++) for (u32 i = 0; i < (sec_size >> 4); i++)
{ {
for (u32 j = 0; j < 0x10; j++) for (u32 j = 0; j < 4; j++)
pdst[j] = pdst[j] ^ tweak[j]; pdst[j] = pdst[j] ^ ptweak[j];
_gf256_mul_x_le(tweak); _gf256_mul_x_le(orig_tweak);
pdst += 0x10; pdst += 4;
} }
return 1; return 1;
} }
static int nx_emmc_bis_write_block(u32 sector, u32 count, void *buff, bool flush)
{
if (!system_part)
return 3; // Not ready.
int res;
u8 tweak[SE_KEY_128_SIZE] __attribute__((aligned(4)));
u32 cluster = sector / BIS_CLUSTER_SECTORS;
u32 aligned_sector = cluster * BIS_CLUSTER_SECTORS;
u32 sector_in_cluster = sector % BIS_CLUSTER_SECTORS;
u32 lookup_idx = cache_lookup_tbl[cluster];
bool is_cached = lookup_idx != BIS_CACHE_LOOKUP_TBL_EMPTY_ENTRY;
// Write to cached cluster.
if (is_cached)
{
if (buff)
memcpy(bis_cache->clusters[lookup_idx].data + sector_in_cluster * NX_EMMC_BLOCKSIZE, buff, count * NX_EMMC_BLOCKSIZE);
else
buff = bis_cache->clusters[lookup_idx].data;
if (!bis_cache->clusters[lookup_idx].dirty)
bis_cache->dirty_cnt++;
bis_cache->clusters[lookup_idx].dirty = true;
if (!flush)
return 0; // Success.
// Reset args to trigger a full cluster flush to emmc.
sector_in_cluster = 0;
sector = aligned_sector;
count = BIS_CLUSTER_SECTORS;
}
// Encrypt cluster.
if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 1, tweak, true, sector_in_cluster, cluster, bis_cache->dma_buff, buff, count * NX_EMMC_BLOCKSIZE))
return 1; // Encryption error.
// If not reading from cache, do a regular read and decrypt.
if (!emu_offset)
res = nx_emmc_part_write(&emmc_storage, system_part, sector, count, bis_cache->dma_buff);
else
res = sdmmc_storage_read(&sd_storage, emu_offset + system_part->lba_start + sector, count, bis_cache->dma_buff);
if (!res)
return 1; // R/W error.
// Mark cache entry not dirty if write succeeds.
if (is_cached)
{
bis_cache->clusters[lookup_idx].dirty = false;
bis_cache->dirty_cnt--;
}
return 0; // Success.
}
static void _nx_emmc_bis_cluster_cache_init(bool enable_cache)
{
u32 cache_lookup_tbl_size = (system_part->lba_end - system_part->lba_start + 1) / BIS_CLUSTER_SECTORS * sizeof(*cache_lookup_tbl);
// Clear cache header.
memset(bis_cache, 0, sizeof(bis_cache_t));
// Clear cluster lookup table.
memset(cache_lookup_tbl, BIS_CACHE_LOOKUP_TBL_EMPTY_ENTRY, cache_lookup_tbl_size);
// Enable cache.
bis_cache->enabled = enable_cache;
}
static void _nx_emmc_bis_flush_cache()
{
if (!bis_cache->enabled || !bis_cache->dirty_cnt)
return;
for (u32 i = 0; i < bis_cache->top_idx && bis_cache->dirty_cnt; i++)
{
if (bis_cache->clusters[i].dirty) {
nx_emmc_bis_write_block(bis_cache->clusters[i].cluster_idx * BIS_CLUSTER_SECTORS, BIS_CLUSTER_SECTORS, NULL, true);
bis_cache->dirty_cnt--;
}
}
_nx_emmc_bis_cluster_cache_init(true);
}
static int nx_emmc_bis_read_block_normal(u32 sector, u32 count, void *buff)
{
static u32 prev_cluster = -1;
static u32 prev_sector = 0;
static u8 tweak[SE_KEY_128_SIZE] __attribute__((aligned(4)));
int res;
bool regen_tweak = true;
u32 tweak_exp = 0;
u32 cluster = sector / BIS_CLUSTER_SECTORS;
u32 sector_in_cluster = sector % BIS_CLUSTER_SECTORS;
// If not reading from cache, do a regular read and decrypt.
if (!emu_offset)
res = nx_emmc_part_read(&emmc_storage, system_part, sector, count, bis_cache->dma_buff);
else
res = sdmmc_storage_read(&sd_storage, emu_offset + system_part->lba_start + sector, count, bis_cache->dma_buff);
if (!res)
return 1; // R/W error.
if (prev_cluster != cluster) // Sector in different cluster than last read.
{
prev_cluster = cluster;
tweak_exp = sector_in_cluster;
}
else if (sector > prev_sector) // Sector in same cluster and past last sector.
{
// Calculates the new tweak using the saved one, reducing expensive _gf256_mul_x_le calls.
tweak_exp = sector - prev_sector - 1;
regen_tweak = false;
}
else // Sector in same cluster and before or same as last sector.
tweak_exp = sector_in_cluster;
// Maximum one cluster (1 XTS crypto block 16KB).
if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, bis_cache->dma_buff, count * NX_EMMC_BLOCKSIZE))
return 1; // R/W error.
prev_sector = sector + count - 1;
return 0; // Success.
}
static int nx_emmc_bis_read_block_cached(u32 sector, u32 count, void *buff)
{
int res;
u8 cache_tweak[SE_KEY_128_SIZE] __attribute__((aligned(4)));
u32 cluster = sector / BIS_CLUSTER_SECTORS;
u32 cluster_sector = cluster * BIS_CLUSTER_SECTORS;
u32 sector_in_cluster = sector % BIS_CLUSTER_SECTORS;
u32 lookup_idx = cache_lookup_tbl[cluster];
// Read from cached cluster.
if (lookup_idx != BIS_CACHE_LOOKUP_TBL_EMPTY_ENTRY)
{
memcpy(buff, bis_cache->clusters[lookup_idx].data + sector_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE);
return 0; // Success.
}
// Flush cache if full.
if (bis_cache->top_idx >= BIS_CACHE_MAX_ENTRIES)
_nx_emmc_bis_flush_cache();
// Set new cached cluster parameters.
bis_cache->clusters[bis_cache->top_idx].cluster_idx = cluster;
bis_cache->clusters[bis_cache->top_idx].dirty = false;
cache_lookup_tbl[cluster] = bis_cache->top_idx;
// Read the whole cluster the sector resides in.
if (!emu_offset)
res = nx_emmc_part_read(&emmc_storage, system_part, cluster_sector, BIS_CLUSTER_SECTORS, bis_cache->dma_buff);
else
res = sdmmc_storage_read(&sd_storage, emu_offset + system_part->lba_start + cluster_sector, BIS_CLUSTER_SECTORS, bis_cache->dma_buff);
if (!res)
return 1; // R/W error.
// Decrypt cluster.
if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 0, cache_tweak, true, 0, cluster, bis_cache->dma_buff, bis_cache->dma_buff, BIS_CLUSTER_SIZE))
return 1; // Decryption error.
// Copy to cluster cache.
memcpy(bis_cache->clusters[bis_cache->top_idx].data, bis_cache->dma_buff, BIS_CLUSTER_SIZE);
memcpy(buff, bis_cache->dma_buff + sector_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE);
// Increment cache count.
bis_cache->top_idx++;
return 0; // Success.
}
static int nx_emmc_bis_read_block(u32 sector, u32 count, void *buff) static int nx_emmc_bis_read_block(u32 sector, u32 count, void *buff)
{ {
if (!system_part) if (!system_part)
return 3; // Not ready. return 3; // Not ready.
static u32 prev_cluster = -1; if (bis_cache->enabled)
static u32 prev_sector = 0; return nx_emmc_bis_read_block_cached(sector, count, buff);
static u8 tweak[0x10]; else
return nx_emmc_bis_read_block_normal(sector, count, buff);
u32 cache_idx = 0;
u32 tweak_exp = 0;
bool regen_tweak = true;
bool cache_sector = false;
if (count == 1)
{
for ( ; cache_idx < sector_cache_cnt; cache_idx++)
{
if (sector_cache[cache_idx].sector == sector)
{
sector_cache[cache_idx].visit_cnt++;
memcpy(buff, sector_cache[cache_idx].data, 0x200);
memcpy(tweak, sector_cache[cache_idx].tweak, 0x10);
prev_sector = sector;
prev_cluster = sector >> 5;
return 0;
}
}
// add to cache
if (cache_idx == sector_cache_cnt && cache_idx < MAX_SEC_CACHE_ENTRIES)
{
sector_cache[cache_idx].sector = sector;
sector_cache[cache_idx].visit_cnt++;
cache_sector = true;
sector_cache_cnt++;
}
}
if (nx_emmc_part_read(&emmc_storage, system_part, sector, count, buff))
{
if (prev_cluster != sector >> 5) // Sector in different cluster than last read.
{
prev_cluster = sector >> 5;
tweak_exp = sector % 0x20;
}
else if (sector > prev_sector) // Sector in same cluster and past last sector.
{
tweak_exp = sector - prev_sector - 1;
regen_tweak = false;
}
else // Sector in same cluster and before or same as last sector.
tweak_exp = sector % 0x20;
// Maximum one cluster (1 XTS crypto block 16KB).
_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, buff, count << 9);
if (cache_sector)
{
memcpy(sector_cache[cache_idx].data, buff, 0x200);
memcpy(sector_cache[cache_idx].tweak, tweak, 0x10);
}
prev_sector = sector + count - 1;
return 0;
}
// Error occurred.
return 1;
} }
int nx_emmc_bis_read(u32 sector, u32 count, void *buff) int nx_emmc_bis_read(u32 sector, u32 count, void *buff)
{ {
int res = 1;
u8 *buf = (u8 *)buff; u8 *buf = (u8 *)buff;
u32 curr_sct = sector; u32 curr_sct = sector;
while (count) while (count)
{ {
u32 sct_cnt = MIN(count, 0x20); u32 sct_cnt = MIN(count, BIS_CLUSTER_SECTORS);
res = nx_emmc_bis_read_block(curr_sct, sct_cnt, buf); if (nx_emmc_bis_read_block(curr_sct, sct_cnt, buf))
if (res) return 0;
return 1;
count -= sct_cnt; count -= sct_cnt;
curr_sct += sct_cnt; curr_sct += sct_cnt;
buf += 512 * sct_cnt; buf += sct_cnt * NX_EMMC_BLOCKSIZE;
} }
return res; return 1;
} }
void nx_emmc_bis_init(emmc_part_t *part) int nx_emmc_bis_write(u32 sector, u32 count, void *buff)
{
u8 *buf = (u8 *)buff;
u32 curr_sct = sector;
while (count)
{
u32 sct_cnt = MIN(count, BIS_CLUSTER_SECTORS);
if (nx_emmc_bis_write_block(curr_sct, sct_cnt, buf, false))
return 0;
count -= sct_cnt;
curr_sct += sct_cnt;
buf += sct_cnt * NX_EMMC_BLOCKSIZE;
}
return 1;
}
void nx_emmc_bis_init(emmc_part_t *part, bool enable_cache, u32 emummc_offset)
{ {
system_part = part; system_part = part;
sector_cache_cnt = 0; emu_offset = emummc_offset;
switch (part->index) _nx_emmc_bis_cluster_cache_init(enable_cache);
if (!strcmp(part->name, "PRODINFO") || !strcmp(part->name, "PRODINFOF"))
{ {
case 0: // PRODINFO.
case 1: // PRODINFOF.
ks_crypt = 0; ks_crypt = 0;
ks_tweak = 1; ks_tweak = 1;
break; }
case 8: // SAFE. else if (!strcmp(part->name, "SAFE"))
{
ks_crypt = 2; ks_crypt = 2;
ks_tweak = 3; ks_tweak = 3;
break; }
case 9: // SYSTEM. else if (!strcmp(part->name, "SYSTEM") || !strcmp(part->name, "USER"))
case 10: // USER. {
ks_crypt = 4; ks_crypt = 4;
ks_tweak = 5; ks_tweak = 5;
break;
} }
else
system_part = NULL;
}
void nx_emmc_bis_end()
{
_nx_emmc_bis_flush_cache();
system_part = NULL;
} }

View file

@ -223,7 +223,8 @@ typedef struct _nx_emmc_cal0_t
u8 console_6axis_sensor_mount_type; u8 console_6axis_sensor_mount_type;
} __attribute__((packed)) nx_emmc_cal0_t; } __attribute__((packed)) nx_emmc_cal0_t;
int nx_emmc_bis_read(u32 sector, u32 count, void *buff); int nx_emmc_bis_read(u32 sector, u32 count, void *buff);
void nx_emmc_bis_init(emmc_part_t *part); void nx_emmc_bis_init(emmc_part_t *part, bool enable_cache, u32 emummc_offset);
void nx_emmc_bis_end();
#endif #endif