1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-29 21:12:06 +00:00
hekate/nyx/nyx_gui/hos/pkg2.c
Dave Murphy cc54df87d7 fixes for compiling with gcc 10
gcc 10 no longer lets you get away with not externing global variables in header files. This adds the necessary extern and adds defines in appropriate c files
2020-05-08 23:32:44 +01:00

226 lines
5.9 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "pkg2.h"
#include "hos.h"
#include "../libs/fatfs/ff.h"
#include "../utils/aarch64_util.h"
#include "../mem/heap.h"
#include "../sec/se.h"
#include "../libs/compr/blz.h"
#include "../gfx/gfx.h"
extern const u8 package2_keyseed[];
u32 pkg2_newkern_ini1_val;
u32 pkg2_newkern_ini1_start;
u32 pkg2_newkern_ini1_end;
/*#include "util.h"
#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DEBUG_PRINTING*/
#define DPRINTF(...)
u32 pkg2_calc_kip1_size(pkg2_kip1_t *kip1)
{
u32 size = sizeof(pkg2_kip1_t);
for (u32 j = 0; j < KIP1_NUM_SECTIONS; j++)
size += kip1->sections[j].size_comp;
return size;
}
void pkg2_get_newkern_info(u8 *kern_data)
{
u32 pkg2_newkern_ini1_off = 0;
pkg2_newkern_ini1_start = 0;
// Find static OP offset that is close to INI1 offset.
u32 counter_ops = 0x100;
while (counter_ops)
{
if (*(u32 *)(kern_data + 0x100 - counter_ops) == PKG2_NEWKERN_GET_INI1_HEURISTIC)
{
pkg2_newkern_ini1_off = 0x100 - counter_ops + 12; // OP found. Add 12 for the INI1 offset.
break;
}
counter_ops -= 4;
}
// Offset not found?
if (!counter_ops)
return;
u32 info_op = *(u32 *)(kern_data + pkg2_newkern_ini1_off);
pkg2_newkern_ini1_val = ((info_op & 0xFFFF) >> 3) + pkg2_newkern_ini1_off; // Parse ADR and PC.
pkg2_newkern_ini1_start = *(u32 *)(kern_data + pkg2_newkern_ini1_val);
pkg2_newkern_ini1_end = *(u32 *)(kern_data + pkg2_newkern_ini1_val + 0x8);
}
bool pkg2_parse_kips(link_t *info, pkg2_hdr_t *pkg2, bool *new_pkg2)
{
u8 *ptr;
// Check for new pkg2 type.
if (!pkg2->sec_size[PKG2_SEC_INI1])
{
pkg2_get_newkern_info(pkg2->data);
if (!pkg2_newkern_ini1_start)
return false;
ptr = pkg2->data + pkg2_newkern_ini1_start;
*new_pkg2 = true;
}
else
ptr = pkg2->data + pkg2->sec_size[PKG2_SEC_KERNEL];
pkg2_ini1_t *ini1 = (pkg2_ini1_t *)ptr;
ptr += sizeof(pkg2_ini1_t);
for (u32 i = 0; i < ini1->num_procs; i++)
{
pkg2_kip1_t *kip1 = (pkg2_kip1_t *)ptr;
pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t));
ki->kip1 = kip1;
ki->size = pkg2_calc_kip1_size(kip1);
list_append(info, &ki->link);
ptr += ki->size;
DPRINTF(" kip1 %d:%s @ %08X (%08X)\n", i, kip1->name, (u32)kip1, ki->size);
}
return true;
}
static const u8 mkey_keyseed_8xx[][0x10] =
{
// Master key 8 encrypted with 9. (8.1.0 with 9.0.0)
{ 0x4D, 0xD9, 0x98, 0x42, 0x45, 0x0D, 0xB1, 0x3C, 0x52, 0x0C, 0x9A, 0x44, 0xBB, 0xAD, 0xAF, 0x80 },
// Master key 9 encrypted with 10. (9.0.0 with 9.1.0)
{ 0xB8, 0x96, 0x9E, 0x4A, 0x00, 0x0D, 0xD6, 0x28, 0xB3, 0xD1, 0xDB, 0x68, 0x5F, 0xFB, 0xE1, 0x2A }
};
static bool _pkg2_key_unwrap_validate(pkg2_hdr_t *tmp_test, pkg2_hdr_t *hdr, u8 src_slot, u8 *mkey, const u8 *key_seed)
{
// Decrypt older encrypted mkey.
se_aes_crypt_ecb(src_slot, 0, mkey, 0x10, key_seed, 0x10);
// Set and unwrap pkg2 key.
se_aes_key_clear(9);
se_aes_key_set(9, mkey, 0x10);
se_aes_unwrap_key(9, 9, package2_keyseed);
// Decrypt header.
se_aes_crypt_ctr(9, tmp_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
// Return if header is valid.
return (tmp_test->magic == PKG2_MAGIC);
}
pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb)
{
pkg2_hdr_t mkey_test;
u8 *pdata = (u8 *)data;
u8 keyslot = 8;
// Skip signature.
pdata += 0x100;
pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdata;
// Skip header.
pdata += sizeof(pkg2_hdr_t);
//! Check if we need to decrypt with newer mkeys. Valid for sept for 8.1.0 and up.
se_aes_crypt_ctr(8, &mkey_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
if (mkey_test.magic == PKG2_MAGIC)
goto key_found;
// Decrypt older pkg2 via new mkeys.
if ((kb >= KB_FIRMWARE_VERSION_810) && (kb < KB_FIRMWARE_VERSION_MAX))
{
u8 tmp_mkey[0x10];
u8 decr_slot = 12; // Sept mkey.
u8 mkey_seeds_cnt = sizeof(mkey_keyseed_8xx) / 0x10;
u8 mkey_seeds_idx = mkey_seeds_cnt; // Real index + 1.
u8 mkey_seeds_min_idx = mkey_seeds_cnt - (KB_FIRMWARE_VERSION_MAX - kb);
while (mkey_seeds_cnt)
{
// Decrypt and validate mkey.
int res = _pkg2_key_unwrap_validate(&mkey_test, hdr, decr_slot,
tmp_mkey, mkey_keyseed_8xx[mkey_seeds_idx - 1]);
if (res)
{
keyslot = 9;
goto key_found;
}
else
{
// Set current mkey in order to decrypt a lower mkey.
mkey_seeds_idx--;
se_aes_key_clear(9);
se_aes_key_set(9, tmp_mkey, 0x10);
decr_slot = 9; // Temp key.
// Check if we tried last key for that pkg2 version.
// And start with a lower mkey in case sept is older.
if (mkey_seeds_idx == mkey_seeds_min_idx)
{
mkey_seeds_cnt--;
mkey_seeds_idx = mkey_seeds_cnt;
decr_slot = 12; // Sept mkey.
}
// Out of keys. pkg2 is latest or process failed.
if (!mkey_seeds_cnt)
se_aes_key_clear(9);
}
}
}
key_found:
// Decrypt header.
se_aes_crypt_ctr(keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
//gfx_hexdump((u32)hdr, hdr, 0x100);
if (hdr->magic != PKG2_MAGIC)
return NULL;
for (u32 i = 0; i < 4; i++)
{
DPRINTF("sec %d has size %08X\n", i, hdr->sec_size[i]);
if (!hdr->sec_size[i])
continue;
se_aes_crypt_ctr(keyslot, pdata, hdr->sec_size[i], pdata, hdr->sec_size[i], &hdr->sec_ctr[i * 0x10]);
//gfx_hexdump((u32)pdata, pdata, 0x100);
pdata += hdr->sec_size[i];
}
if (keyslot != 8)
se_aes_key_clear(9);
return hdr;
}