1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-01 00:11:43 +00:00
hekate/bootloader/storage/sdmmc_driver.c
Dave Murphy cc54df87d7 fixes for compiling with gcc 10
gcc 10 no longer lets you get away with not externing global variables in header files. This adds the necessary extern and adds defines in appropriate c files
2020-05-08 23:32:44 +01:00

1267 lines
30 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2019 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "mmc.h"
#include "sdmmc.h"
#include "../gfx/gfx.h"
#include "../power/max7762x.h"
#include "../soc/bpmp.h"
#include "../soc/clock.h"
#include "../soc/gpio.h"
#include "../soc/pinmux.h"
#include "../soc/pmc.h"
#include "../soc/t210.h"
#include "../utils/util.h"
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
u32 sd_power_cycle_time_start;
/*! SCMMC controller base addresses. */
static const u32 _sdmmc_bases[4] = {
0x700B0000,
0x700B0200,
0x700B0400,
0x700B0600,
};
int sdmmc_get_io_power(sdmmc_t *sdmmc)
{
u32 p = sdmmc->regs->pwrcon;
if (!(p & SDHCI_POWER_ON))
return SDMMC_POWER_OFF;
if (p & SDHCI_POWER_180)
return SDMMC_POWER_1_8;
if (p & SDHCI_POWER_330)
return SDMMC_POWER_3_3;
return -1;
}
static int _sdmmc_set_io_power(sdmmc_t *sdmmc, u32 power)
{
switch (power)
{
case SDMMC_POWER_OFF:
sdmmc->regs->pwrcon &= ~SDHCI_POWER_ON;
break;
case SDMMC_POWER_1_8:
sdmmc->regs->pwrcon = SDHCI_POWER_180;
break;
case SDMMC_POWER_3_3:
sdmmc->regs->pwrcon = SDHCI_POWER_330;
break;
default:
return 0;
}
if (power != SDMMC_POWER_OFF)
sdmmc->regs->pwrcon |= SDHCI_POWER_ON;
return 1;
}
u32 sdmmc_get_bus_width(sdmmc_t *sdmmc)
{
u32 h = sdmmc->regs->hostctl;
if (h & SDHCI_CTRL_8BITBUS)
return SDMMC_BUS_WIDTH_8;
if (h & SDHCI_CTRL_4BITBUS)
return SDMMC_BUS_WIDTH_4;
return SDMMC_BUS_WIDTH_1;
}
void sdmmc_set_bus_width(sdmmc_t *sdmmc, u32 bus_width)
{
u32 host_control = sdmmc->regs->hostctl & ~(SDHCI_CTRL_4BITBUS | SDHCI_CTRL_8BITBUS);
if (bus_width == SDMMC_BUS_WIDTH_1)
sdmmc->regs->hostctl = host_control;
else if (bus_width == SDMMC_BUS_WIDTH_4)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_4BITBUS;
else if (bus_width == SDMMC_BUS_WIDTH_8)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_8BITBUS;
}
void sdmmc_set_tap_value(sdmmc_t *sdmmc)
{
sdmmc->venclkctl_tap = sdmmc->regs->venclkctl >> 16;
sdmmc->venclkctl_set = 1;
}
static int _sdmmc_config_tap_val(sdmmc_t *sdmmc, u32 type)
{
const u32 dqs_trim_val = 0x28;
const u32 tap_values[] = { 4, 0, 3, 0 };
u32 tap_val = 0;
if (type == SDHCI_TIMING_MMC_HS400)
sdmmc->regs->vencapover = (sdmmc->regs->vencapover & 0xFFFFC0FF) | (dqs_trim_val << 8);
sdmmc->regs->ventunctl0 &= ~TEGRA_MMC_VNDR_TUN_CTRL0_TAP_VAL_UPDATED_BY_HW;
if (type == SDHCI_TIMING_MMC_HS400)
{
if (!sdmmc->venclkctl_set)
return 0;
tap_val = sdmmc->venclkctl_tap;
}
else
{
tap_val = tap_values[sdmmc->id];
}
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xFF00FFFF) | (tap_val << 16);
return 1;
}
static int _sdmmc_get_clkcon(sdmmc_t *sdmmc)
{
return sdmmc->regs->clkcon;
}
static void _sdmmc_pad_config_fallback(sdmmc_t *sdmmc, u32 power)
{
_sdmmc_get_clkcon(sdmmc);
switch (sdmmc->id)
{
case SDMMC_1: // 33 Ohm 2X Driver.
if (power == SDMMC_POWER_OFF)
break;
u32 sdmmc1_pad_cfg = APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xF8080FFF;
if (power == SDMMC_POWER_1_8)
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = sdmmc1_pad_cfg | (0xB0F << 12); // Up: 11, Dn: 15. For 33 ohm.
else if (power == SDMMC_POWER_3_3)
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = sdmmc1_pad_cfg | (0xC0C << 12); // Up: 12, Dn: 12. For 33 ohm.
break;
case SDMMC_2:
case SDMMC_4: // 50 Ohm 2X Driver. PU:16, PD:16.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) & 0xFFFFC003) | 0x1040;
break;
}
}
static void _sdmmc_autocal_execute(sdmmc_t *sdmmc, u32 power)
{
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
// Enable E_INPUT power.
if (!(sdmmc->regs->sdmemcmppadctl & TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD))
{
sdmmc->regs->sdmemcmppadctl |= TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD;
_sdmmc_get_clkcon(sdmmc);
usleep(1);
}
// Enable auto calibration and start auto configuration.
sdmmc->regs->autocalcfg |= TEGRA_MMC_AUTOCALCFG_AUTO_CAL_ENABLE | TEGRA_MMC_AUTOCALCFG_AUTO_CAL_START;
_sdmmc_get_clkcon(sdmmc);
usleep(2);
u32 timeout = get_tmr_ms() + 10;
while (sdmmc->regs->autocalsts & TEGRA_MMC_AUTOCALSTS_AUTO_CAL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
timeout = 0; // Set timeout to 0 if we timed out.
break;
}
}
/*
// Check if PU results are inside limits.
// SDMMC1: CZ pads - 7-bit PU. SDMMC2/4: LV_CZ pads - 5-bit PU.
u8 autocal_pu_status = sdmmc->regs->autocalsts & 0x7F;
switch (sdmmc->id)
{
case SDMMC_1:
if (!autocal_pu_status || autocal_pu_status == 0x7F)
timeout = 0;
break;
case SDMMC_2:
case SDMMC_4:
autocal_pu_status &= 0x1F;
if (!autocal_pu_status || autocal_pu_status == 0x1F)
timeout = 0;
break;
}
*/
// In case auto calibration fails, we load suggested standard values.
if (!timeout)
{
_sdmmc_pad_config_fallback(sdmmc, power);
sdmmc->regs->autocalcfg &= ~TEGRA_MMC_AUTOCALCFG_AUTO_CAL_ENABLE;
}
// Disable E_INPUT to conserve power.
sdmmc->regs->sdmemcmppadctl &= ~TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD;
if(should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_dll_cal_execute(sdmmc_t *sdmmc)
{
int result = 1, should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
sdmmc->regs->vendllcalcfg |= TEGRA_MMC_DLLCAL_CFG_EN_CALIBRATE;
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 5;
while (sdmmc->regs->vendllcalcfg & TEGRA_MMC_DLLCAL_CFG_EN_CALIBRATE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
timeout = get_tmr_ms() + 10;
while (sdmmc->regs->vendllcalcfgsts & TEGRA_MMC_DLLCAL_CFG_STATUS_DLL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
out:;
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static void _sdmmc_reset(sdmmc_t *sdmmc)
{
sdmmc->regs->swrst |= SDHCI_RESET_CMD | SDHCI_RESET_DATA;
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while ((sdmmc->regs->swrst & (SDHCI_RESET_CMD | SDHCI_RESET_DATA)) && get_tmr_ms() < timeout)
;
}
int sdmmc_setup_clock(sdmmc_t *sdmmc, u32 type)
{
// Disable the SD clock if it was enabled, and reenable it later.
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
_sdmmc_config_tap_val(sdmmc, type);
_sdmmc_reset(sdmmc);
switch (type)
{
case SDHCI_TIMING_MMC_ID:
case SDHCI_TIMING_MMC_LS26:
case SDHCI_TIMING_SD_ID:
case SDHCI_TIMING_SD_DS12:
sdmmc->regs->hostctl &= ~SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS52:
case SDHCI_TIMING_SD_HS25:
sdmmc->regs->hostctl |= SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_UHS_SDR50: // T210 Errata for SDR50, the host must be set to SDR104.
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
case SDHCI_TIMING_UHS_DDR50:
case SDHCI_TIMING_MMC_DDR52:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR104_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS400:
// Non standard.
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | HS400_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR25:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR25_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR12:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR12_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
}
_sdmmc_get_clkcon(sdmmc);
u32 clock;
u16 divisor;
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_config_clock_source(&clock, sdmmc->id, clock);
sdmmc->divisor = (clock + divisor - 1) / divisor;
//if divisor != 1 && divisor << 31 -> error
u16 div = divisor >> 1;
divisor = 0;
if (div > 0xFF)
divisor = div >> SDHCI_DIVIDER_SHIFT;
sdmmc->regs->clkcon = (sdmmc->regs->clkcon & ~(SDHCI_DIV_MASK | SDHCI_DIV_HI_MASK))
| (div << SDHCI_DIVIDER_SHIFT) | (divisor << SDHCI_DIVIDER_HI_SHIFT);
// Enable the SD clock again.
if (should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
if (type == SDHCI_TIMING_MMC_HS400)
return _sdmmc_dll_cal_execute(sdmmc);
return 1;
}
static void _sdmmc_card_clock_enable(sdmmc_t *sdmmc)
{
// Recalibrate conditionally.
if ((sdmmc->id == SDMMC_1) && !sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
if (!sdmmc->auto_cal_enabled)
{
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
sdmmc->card_clock_enabled = 1;
}
static void _sdmmc_sd_clock_disable(sdmmc_t *sdmmc)
{
sdmmc->card_clock_enabled = 0;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
void sdmmc_card_clock_ctrl(sdmmc_t *sdmmc, int auto_cal_enable)
{
// Recalibrate periodically for SDMMC1.
if ((sdmmc->id == SDMMC_1) && !auto_cal_enable && sdmmc->card_clock_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
sdmmc->auto_cal_enabled = auto_cal_enable;
if (auto_cal_enable)
{
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
return;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return;
}
if (sdmmc->card_clock_enabled)
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_cache_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->regs->rspreg0;
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
return 0;
// CRC is stripped, so shifting is needed.
u32 tempreg;
for (int i = 0; i < 4; i++)
{
switch(i)
{
case 0:
tempreg = sdmmc->regs->rspreg3;
break;
case 1:
tempreg = sdmmc->regs->rspreg2;
break;
case 2:
tempreg = sdmmc->regs->rspreg1;
break;
case 3:
tempreg = sdmmc->regs->rspreg0;
break;
}
rsp[i] = tempreg << 8;
if (i != 0)
rsp[i - 1] |= (tempreg >> 24) & 0xFF;
}
break;
default:
return 0;
break;
}
return 1;
}
int sdmmc_get_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
if (!rsp || sdmmc->expected_rsp_type != type)
return 0;
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->rsp[0];
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
return 0;
rsp[0] = sdmmc->rsp[0];
rsp[1] = sdmmc->rsp[1];
rsp[2] = sdmmc->rsp[2];
rsp[3] = sdmmc->rsp[3];
break;
default:
return 0;
break;
}
return 1;
}
static int _sdmmc_wait_cmd_data_inhibit(sdmmc_t *sdmmc, bool wait_dat)
{
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while(sdmmc->regs->prnsts & SDHCI_CMD_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
if (wait_dat)
{
timeout = get_tmr_ms() + 2000;
while (sdmmc->regs->prnsts & SDHCI_DATA_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_wait_card_busy(sdmmc_t *sdmmc)
{
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->prnsts & SDHCI_DATA_0_LVL_MASK))
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
return 1;
}
static int _sdmmc_setup_read_small_block(sdmmc_t *sdmmc)
{
switch (sdmmc_get_bus_width(sdmmc))
{
case SDMMC_BUS_WIDTH_1:
return 0;
break;
case SDMMC_BUS_WIDTH_4:
sdmmc->regs->blksize = 64;
break;
case SDMMC_BUS_WIDTH_8:
sdmmc->regs->blksize = 128;
break;
}
sdmmc->regs->blkcnt = 1;
sdmmc->regs->trnmod = SDHCI_TRNS_READ;
return 1;
}
static int _sdmmc_send_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, bool is_data_present)
{
u16 cmdflags = 0;
switch (cmd->rsp_type)
{
case SDMMC_RSP_TYPE_0:
break;
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (cmd->check_busy)
cmdflags = SDHCI_CMD_RESP_LEN48_BUSY | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
else
cmdflags = SDHCI_CMD_RESP_LEN48 | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_2:
cmdflags = SDHCI_CMD_RESP_LEN136 | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_3:
cmdflags = SDHCI_CMD_RESP_LEN48;
break;
default:
return 0;
break;
}
if (is_data_present)
cmdflags |= SDHCI_CMD_DATA;
sdmmc->regs->argument = cmd->arg;
sdmmc->regs->cmdreg = (cmd->cmd << 8) | cmdflags;
return 1;
}
static void _sdmmc_send_tuning_cmd(sdmmc_t *sdmmc, u32 cmd)
{
sdmmc_cmd_t cmdbuf;
cmdbuf.cmd = cmd;
cmdbuf.arg = 0;
cmdbuf.rsp_type = SDMMC_RSP_TYPE_1;
cmdbuf.check_busy = 0;
_sdmmc_send_cmd(sdmmc, &cmdbuf, true);
}
static int _sdmmc_tuning_execute_once(sdmmc_t *sdmmc, u32 cmd)
{
if (sdmmc->auto_cal_enabled)
return 0;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, true))
return 0;
_sdmmc_setup_read_small_block(sdmmc);
sdmmc->regs->norintstsen |= SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
_sdmmc_send_tuning_cmd(sdmmc, cmd);
_sdmmc_get_clkcon(sdmmc);
usleep(1);
_sdmmc_reset(sdmmc);
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_us() + 5000;
while (get_tmr_us() < timeout)
{
if (sdmmc->regs->norintsts & SDHCI_INT_DATA_AVAIL)
{
sdmmc->regs->norintsts = SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_get_clkcon(sdmmc);
usleep((1000 * 8 + sdmmc->divisor - 1) / sdmmc->divisor);
return 1;
}
}
_sdmmc_reset(sdmmc);
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_get_clkcon(sdmmc);
usleep((1000 * 8 + sdmmc->divisor - 1) / sdmmc->divisor);
return 0;
}
int sdmmc_tuning_execute(sdmmc_t *sdmmc, u32 type, u32 cmd)
{
u32 max = 0, flag = 0;
switch (type)
{
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_MMC_HS400:
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
max = 128;
flag = (2 << 13); // 128 iterations.
break;
case SDHCI_TIMING_UHS_SDR50:
case SDHCI_TIMING_UHS_DDR50:
case SDHCI_TIMING_MMC_DDR52:
max = 256;
flag = (4 << 13); // 256 iterations.
break;
case SDHCI_TIMING_UHS_SDR12:
case SDHCI_TIMING_UHS_SDR25:
return 1;
default:
return 0;
}
sdmmc->regs->ventunctl1 = 0; // step_size 1.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFF1FFF) | flag; // Tries.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFFE03F) | (1 << 6); // 1x Multiplier.
sdmmc->regs->ventunctl0 |= TEGRA_MMC_VNDR_TUN_CTRL0_TAP_VAL_UPDATED_BY_HW;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_EXEC_TUNING;
for (u32 i = 0; i < max; i++)
{
_sdmmc_tuning_execute_once(sdmmc, cmd);
if (!(sdmmc->regs->hostctl2 & SDHCI_CTRL_EXEC_TUNING))
break;
}
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_TUNED_CLK)
return 1;
return 0;
}
static int _sdmmc_enable_internal_clock(sdmmc_t *sdmmc)
{
//Enable internal clock and wait till it is stable.
sdmmc->regs->clkcon |= SDHCI_CLOCK_INT_EN;
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->clkcon & SDHCI_CLOCK_INT_STABLE))
{
if (get_tmr_ms() > timeout)
return 0;
}
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_PRESET_VAL_EN;
sdmmc->regs->clkcon &= ~SDHCI_PROG_CLOCK_MODE;
sdmmc->regs->hostctl2 |= SDHCI_HOST_VERSION_4_EN;
if (!(sdmmc->regs->capareg & SDHCI_CAN_64BIT))
return 0;
sdmmc->regs->hostctl2 |= SDHCI_ADDRESSING_64BIT_EN;
sdmmc->regs->hostctl &= ~SDHCI_CTRL_DMA_MASK;
sdmmc->regs->timeoutcon = (sdmmc->regs->timeoutcon & 0xF0) | 0xE;
return 1;
}
static int _sdmmc_autocal_config_offset(sdmmc_t *sdmmc, u32 power)
{
u32 off_pd = 0;
u32 off_pu = 0;
switch (sdmmc->id)
{
case SDMMC_2:
case SDMMC_4:
if (power != SDMMC_POWER_1_8)
return 0;
off_pd = 5;
off_pu = 5;
break;
case SDMMC_1:
case SDMMC_3:
if (power == SDMMC_POWER_1_8)
{
off_pd = 123;
off_pu = 123;
}
else if (power == SDMMC_POWER_3_3)
{
off_pd = 125;
off_pu = 0;
}
else
return 0;
break;
}
sdmmc->regs->autocalcfg = (sdmmc->regs->autocalcfg & 0xFFFF8080) | (off_pd << 8) | off_pu;
return 1;
}
static void _sdmmc_enable_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->norintstsen |= SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE;
sdmmc->regs->errintstsen |= SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->errintsts = sdmmc->regs->errintsts;
}
static void _sdmmc_mask_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->errintstsen &= ~SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintstsen &= ~(SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE);
}
static int _sdmmc_check_mask_interrupt(sdmmc_t *sdmmc, u16 *pout, u16 mask)
{
u16 norintsts = sdmmc->regs->norintsts;
u16 errintsts = sdmmc->regs->errintsts;
DPRINTF("norintsts %08X; errintsts %08X\n", norintsts, errintsts);
if (pout)
*pout = norintsts;
// Check for error interrupt.
if (norintsts & SDHCI_INT_ERROR)
{
sdmmc->regs->errintsts = errintsts;
return SDMMC_MASKINT_ERROR;
}
else if (norintsts & mask)
{
sdmmc->regs->norintsts = norintsts & mask;
return SDMMC_MASKINT_MASKED;
}
return SDMMC_MASKINT_NOERROR;
}
static int _sdmmc_wait_response(sdmmc_t *sdmmc)
{
_sdmmc_get_clkcon(sdmmc);
u32 timeout = get_tmr_ms() + 2000;
while (true)
{
int result = _sdmmc_check_mask_interrupt(sdmmc, NULL, SDHCI_INT_RESPONSE);
if (result == SDMMC_MASKINT_MASKED)
break;
if (result != SDMMC_MASKINT_NOERROR || get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_stop_transmission_inner(sdmmc_t *sdmmc, u32 *rsp)
{
sdmmc_cmd_t cmd;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, false))
return 0;
_sdmmc_enable_interrupts(sdmmc);
cmd.cmd = MMC_STOP_TRANSMISSION;
cmd.arg = 0;
cmd.rsp_type = SDMMC_RSP_TYPE_1;
cmd.check_busy = 1;
_sdmmc_send_cmd(sdmmc, &cmd, false);
int result = _sdmmc_wait_response(sdmmc);
_sdmmc_mask_interrupts(sdmmc);
if (!result)
return 0;
_sdmmc_cache_rsp(sdmmc, rsp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_wait_card_busy(sdmmc);
}
int sdmmc_stop_transmission(sdmmc_t *sdmmc, u32 *rsp)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if ((sdmmc->id == SDMMC_1) && sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
bool should_disable_sd_clock = false;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = true;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
}
int result = _sdmmc_stop_transmission_inner(sdmmc, rsp);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static int _sdmmc_config_dma(sdmmc_t *sdmmc, u32 *blkcnt_out, sdmmc_req_t *req)
{
if (!req->blksize || !req->num_sectors)
return 0;
u32 blkcnt = req->num_sectors;
if (blkcnt >= 0xFFFF)
blkcnt = 0xFFFF;
u32 admaaddr = (u32)req->buf;
// Check alignment.
if (admaaddr & 7)
return 0;
sdmmc->regs->admaaddr = admaaddr;
sdmmc->regs->admaaddr_hi = 0;
sdmmc->dma_addr_next = (admaaddr + 0x80000) & 0xFFF80000;
sdmmc->regs->blksize = req->blksize | 0x7000; // DMA 512KB (Detects A18 carry out).
sdmmc->regs->blkcnt = blkcnt;
if (blkcnt_out)
*blkcnt_out = blkcnt;
u32 trnmode = SDHCI_TRNS_DMA;
if (req->is_multi_block)
trnmode = SDHCI_TRNS_MULTI | SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_DMA;
if (!req->is_write)
trnmode |= SDHCI_TRNS_READ;
if (req->is_auto_cmd12)
trnmode = (trnmode & ~(SDHCI_TRNS_AUTO_CMD12 | SDHCI_TRNS_AUTO_CMD23)) | SDHCI_TRNS_AUTO_CMD12;
sdmmc->regs->trnmod = trnmode;
return 1;
}
static int _sdmmc_update_dma(sdmmc_t *sdmmc)
{
u16 blkcnt = 0;
do
{
blkcnt = sdmmc->regs->blkcnt;
u32 timeout = get_tmr_ms() + 1500;
do
{
int result = 0;
while (true)
{
u16 intr = 0;
result = _sdmmc_check_mask_interrupt(sdmmc, &intr,
SDHCI_INT_DATA_END | SDHCI_INT_DMA_END);
if (result < 0)
break;
if (intr & SDHCI_INT_DATA_END)
return 1; // Transfer complete.
if (intr & SDHCI_INT_DMA_END)
{
// Update DMA.
sdmmc->regs->admaaddr = sdmmc->dma_addr_next;
sdmmc->regs->admaaddr_hi = 0;
sdmmc->dma_addr_next += 0x80000;
}
}
if (result != SDMMC_MASKINT_NOERROR)
{
DPRINTF("%08X!\n", result);
_sdmmc_reset(sdmmc);
return 0;
}
} while (get_tmr_ms() < timeout);
} while (sdmmc->regs->blkcnt != blkcnt);
_sdmmc_reset(sdmmc);
return 0;
}
static int _sdmmc_execute_cmd_inner(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
int has_req_or_check_busy = req || cmd->check_busy;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, has_req_or_check_busy))
return 0;
u32 blkcnt = 0;
bool is_data_present = false;
if (req)
{
if (!_sdmmc_config_dma(sdmmc, &blkcnt, req))
{
DPRINTF("SDMMC: DMA Wrong cfg!\n");
return 0;
}
// Flush cache before starting the transfer.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
is_data_present = true;
}
else
is_data_present = false;
_sdmmc_enable_interrupts(sdmmc);
if (!_sdmmc_send_cmd(sdmmc, cmd, is_data_present))
{
DPRINTF("SDMMC: Wrong Response type %08X!\n", cmd->rsp_type);
return 0;
}
int result = _sdmmc_wait_response(sdmmc);
if (!result)
{
DPRINTF("SDMMC: Transfer timeout!\n");
}
DPRINTF("rsp(%d): %08X, %08X, %08X, %08X\n", result,
sdmmc->regs->rspreg0, sdmmc->regs->rspreg1, sdmmc->regs->rspreg2, sdmmc->regs->rspreg3);
if (result)
{
if (cmd->rsp_type)
{
sdmmc->expected_rsp_type = cmd->rsp_type;
result = _sdmmc_cache_rsp(sdmmc, sdmmc->rsp, 0x10, cmd->rsp_type);
if (!result)
{
DPRINTF("SDMMC: Unknown response %08X!\n", sdmmc->rsp[0]);
}
}
if (req && result)
{
result = _sdmmc_update_dma(sdmmc);
if (!result)
{
DPRINTF("SDMMC: DMA Update failed!\n");
}
}
}
_sdmmc_mask_interrupts(sdmmc);
if (result)
{
if (req)
{
// Flush cache after transfer.
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
if (blkcnt_out)
*blkcnt_out = blkcnt;
if (req->is_auto_cmd12)
sdmmc->rsp3 = sdmmc->regs->rspreg3;
}
if (cmd->check_busy || req)
{
result = _sdmmc_wait_card_busy(sdmmc);
if (!result)
{
DPRINTF("SDMMC: Busy timeout!\n");
}
return result;
}
}
return result;
}
bool sdmmc_get_sd_inserted()
{
return (!gpio_read(GPIO_PORT_Z, GPIO_PIN_1));
}
static int _sdmmc_config_sdmmc1()
{
// Configure SD card detect.
PINMUX_AUX(PINMUX_AUX_GPIO_PZ1) = PINMUX_INPUT_ENABLE | PINMUX_PULL_UP | 2; // GPIO control, pull up.
APB_MISC(APB_MISC_GP_VGPIO_GPIO_MUX_SEL) = 0;
gpio_config(GPIO_PORT_Z, GPIO_PIN_1, GPIO_MODE_GPIO);
gpio_output_enable(GPIO_PORT_Z, GPIO_PIN_1, GPIO_OUTPUT_DISABLE);
usleep(100);
// Check if SD card is inserted.
if(!sdmmc_get_sd_inserted())
return 0;
/*
* Pinmux config:
* DRV_TYPE = DRIVE_2X
* E_SCHMT = ENABLE (for 1.8V), DISABLE (for 3.3V)
* E_INPUT = ENABLE
* TRISTATE = PASSTHROUGH
* APB_MISC_GP_SDMMCx_CLK_LPBK_CONTROL = SDMMCx_CLK_PAD_E_LPBK for CLK
*/
// Configure SDMMC1 pinmux.
APB_MISC(APB_MISC_GP_SDMMC1_CLK_LPBK_CONTROL) = 1; // Enable deep loopback for SDMMC1 CLK pad.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED;
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
// Make sure the SDMMC1 controller is powered.
PMC(APBDEV_PMC_NO_IOPOWER) |= PMC_NO_IOPOWER_SDMMC1_IO_EN;
usleep(1000);
PMC(APBDEV_PMC_NO_IOPOWER) &= ~(PMC_NO_IOPOWER_SDMMC1_IO_EN);
// Inform IO pads that voltage is gonna be 3.3V.
PMC(APBDEV_PMC_PWR_DET_VAL) |= PMC_PWR_DET_SDMMC1_IO_EN;
// Set enable SD card power.
PINMUX_AUX(PINMUX_AUX_DMIC3_CLK) = PINMUX_PULL_DOWN | 2; // Pull down.
gpio_config(GPIO_PORT_E, GPIO_PIN_4, GPIO_MODE_GPIO);
gpio_write(GPIO_PORT_E, GPIO_PIN_4, GPIO_HIGH);
gpio_output_enable(GPIO_PORT_E, GPIO_PIN_4, GPIO_OUTPUT_ENABLE);
usleep(1000);
// Enable SD card power.
max77620_regulator_set_voltage(REGULATOR_LDO2, 3300000);
max77620_regulator_enable(REGULATOR_LDO2, 1);
usleep(1000);
// Set pad slew codes to get good quality clock.
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xFFFFFFF) | 0x50000000;
usleep(1000);
return 1;
}
static void _sdmmc_config_emmc(u32 id)
{
switch (id)
{
case SDMMC_2:
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) &= 0xF8003FFF;
break;
case SDMMC_4:
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) &= 0xF8003FFF;
// Set default pad cfg.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) & 0xFFFFC003) | 0x1040;
// Enabled schmitt trigger.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) |= 1; // Enable Schmitt trigger.
break;
}
}
int sdmmc_init(sdmmc_t *sdmmc, u32 id, u32 power, u32 bus_width, u32 type, int auto_cal_enable)
{
const u32 trim_values[] = { 2, 8, 3, 8 };
if (id > SDMMC_4)
return 0;
memset(sdmmc, 0, sizeof(sdmmc_t));
sdmmc->regs = (t210_sdmmc_t *)_sdmmc_bases[id];
sdmmc->id = id;
sdmmc->clock_stopped = 1;
// Do specific SDMMC HW configuration.
switch (id)
{
case SDMMC_1:
if (!_sdmmc_config_sdmmc1())
return 0;
break;
case SDMMC_2:
case SDMMC_4:
_sdmmc_config_emmc(id);
break;
}
if (clock_sdmmc_is_not_reset_and_enabled(id))
{
_sdmmc_sd_clock_disable(sdmmc);
_sdmmc_get_clkcon(sdmmc);
}
u32 clock;
u16 divisor;
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_enable(id, clock);
sdmmc->clock_stopped = 0;
//TODO: make this skip-able.
sdmmc->regs->iospare |= 0x80000; // Enable muxing.
sdmmc->regs->veniotrimctl &= 0xFFFFFFFB; // Set Band Gap VREG to supply DLL.
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xE0FFFFFB) | (trim_values[sdmmc->id] << 24);
sdmmc->regs->sdmemcmppadctl =
(sdmmc->regs->sdmemcmppadctl & TEGRA_MMC_SDMEMCOMPPADCTRL_COMP_VREF_SEL_MASK) | 7;
if (!_sdmmc_autocal_config_offset(sdmmc, power))
return 0;
_sdmmc_autocal_execute(sdmmc, power);
if (_sdmmc_enable_internal_clock(sdmmc))
{
sdmmc_set_bus_width(sdmmc, bus_width);
_sdmmc_set_io_power(sdmmc, power);
if (sdmmc_setup_clock(sdmmc, type))
{
sdmmc_card_clock_ctrl(sdmmc, auto_cal_enable);
_sdmmc_card_clock_enable(sdmmc);
_sdmmc_get_clkcon(sdmmc);
return 1;
}
return 0;
}
return 0;
}
void sdmmc_end(sdmmc_t *sdmmc)
{
if (!sdmmc->clock_stopped)
{
_sdmmc_sd_clock_disable(sdmmc);
// Disable SDMMC power.
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_OFF);
// Disable SD card power.
if (sdmmc->id == SDMMC_1)
{
gpio_output_enable(GPIO_PORT_E, GPIO_PIN_4, GPIO_OUTPUT_DISABLE);
max77620_regulator_enable(REGULATOR_LDO2, 0);
// Inform IO pads that next voltage might be 3.3V.
PMC(APBDEV_PMC_PWR_DET_VAL) |= PMC_PWR_DET_SDMMC1_IO_EN;
sd_power_cycle_time_start = get_tmr_ms(); // Some SanDisk U1 cards need 100ms for a power cycle.
usleep(1000); // To power cycle, min 1ms without power is needed.
}
_sdmmc_get_clkcon(sdmmc);
clock_sdmmc_disable(sdmmc->id);
sdmmc->clock_stopped = 1;
}
}
void sdmmc_init_cmd(sdmmc_cmd_t *cmdbuf, u16 cmd, u32 arg, u32 rsp_type, u32 check_busy)
{
cmdbuf->cmd = cmd;
cmdbuf->arg = arg;
cmdbuf->rsp_type = rsp_type;
cmdbuf->check_busy = check_busy;
}
int sdmmc_execute_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if (sdmmc->id == SDMMC_1 && sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
int should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
}
int result = _sdmmc_execute_cmd_inner(sdmmc, cmd, req, blkcnt_out);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
int sdmmc_enable_low_voltage(sdmmc_t *sdmmc)
{
if(sdmmc->id != SDMMC_1)
return 0;
if (!sdmmc_setup_clock(sdmmc, SDHCI_TIMING_UHS_SDR12))
return 0;
_sdmmc_get_clkcon(sdmmc);
// Switch to 1.8V and wait for regulator to stabilize. Assume max possible wait needed.
max77620_regulator_set_voltage(REGULATOR_LDO2, 1800000);
usleep(300);
// Inform IO pads that we switched to 1.8V.
PMC(APBDEV_PMC_PWR_DET_VAL) &= ~(PMC_PWR_DET_SDMMC1_IO_EN);
// Enable schmitt trigger for better duty cycle and low jitter clock.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) |= PINMUX_SCHMT;
_sdmmc_autocal_config_offset(sdmmc, SDMMC_POWER_1_8);
_sdmmc_autocal_execute(sdmmc, SDMMC_POWER_1_8);
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_1_8);
_sdmmc_get_clkcon(sdmmc);
msleep(5); // Wait minimum 5ms before turning on the card clock.
// Turn on SDCLK.
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_VDD_180)
{
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep(1000);
if ((sdmmc->regs->prnsts & 0xF00000) == 0xF00000)
return 1;
}
return 0;
}