1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-22 18:06:40 +00:00
hekate/bootloader/hos/hos.c
CTCaer dca350bfe9 hos: use strcmp for kip name
KIP1 names are NULL terminated, so use strcmp to reduce codesize.
2024-03-29 13:21:53 +02:00

1195 lines
36 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 st4rk
* Copyright (c) 2018 Ced2911
* Copyright (c) 2018-2024 CTCaer
* Copyright (c) 2018 balika011
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <bdk.h>
#include "hos.h"
#include "hos_config.h"
#include "secmon_exo.h"
#include "../frontend/fe_tools.h"
#include "../config.h"
#include "../storage/emummc.h"
extern hekate_config h_cfg;
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
#define EHPRINTFARGS(text, args...) \
({ gfx_con.mute = false; \
gfx_printf("%k"text"%k\n", TXT_CLR_ERROR, args, TXT_CLR_DEFAULT); })
#define PKG2_LOAD_ADDR 0xA9800000
#define SECMON_BCT_CFG_ADDR 0x4003D000
#define SECMON6_BCT_CFG_ADDR 0x4003F800
// Secmon mailbox.
#define SECMON_MAILBOX_ADDR 0x40002E00
#define SECMON7_MAILBOX_ADDR 0x40000000
#define SECMON_STATE_OFFSET 0xF8
typedef enum
{
SECMON_STATE_NOT_READY = 0,
PKG1_STATE_NOT_READY = 0,
PKG1_STATE_BCT_COPIED = 1,
PKG1_STATE_DRAM_READY = 2,
PKG1_STATE_PKG2_READY_OLD = 3,
PKG1_STATE_PKG2_READY = 4
} pkg1_states_t;
typedef struct _secmon_mailbox_t
{
// < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot.
// >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot.
u32 in;
// Non-zero: Secmon ready.
u32 out;
} secmon_mailbox_t;
typedef struct _tsec_keys_t
{
u8 tsec[SE_KEY_128_SIZE];
u8 tsec_root[SE_KEY_128_SIZE];
u8 tmp[SE_KEY_128_SIZE];
} tsec_keys_t;
typedef struct _kb_keys_t
{
u8 master_kekseed[SE_KEY_128_SIZE];
u8 random_data[0x70];
u8 package1_key[SE_KEY_128_SIZE];
} kb_keys_t;
typedef struct _kb_t
{
u8 cmac[SE_KEY_128_SIZE];
u8 ctr[SE_AES_IV_SIZE];
kb_keys_t keys;
u8 padding[0x150];
} kb_t;
static const u8 keyblob_keyseeds[HOS_KB_VERSION_600 - HOS_KB_VERSION_100 + 1][SE_KEY_128_SIZE] = {
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, // 1.0.0.
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, // 3.0.0.
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, // 3.0.1.
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, // 4.0.0.
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, // 5.0.0.
{ 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } // 6.0.0.
};
static const u8 cmac_keyseed[SE_KEY_128_SIZE] =
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
static const u8 master_keyseed_retail[SE_KEY_128_SIZE] =
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
static const u8 master_keyseed_4xx[SE_KEY_128_SIZE] =
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
static const u8 master_kekseed_620[SE_KEY_128_SIZE] =
{ 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A };
//!TODO: Update on tsec/mkey changes.
static const u8 master_kekseed_t210_tsec_v4[HOS_KB_VERSION_MAX - HOS_KB_VERSION_810 + 1][SE_KEY_128_SIZE] = {
{ 0xDE, 0xDC, 0xE3, 0x39, 0x30, 0x88, 0x16, 0xF8, 0xAE, 0x97, 0xAD, 0xEC, 0x64, 0x2D, 0x41, 0x41 }, // 8.1.0.
{ 0x1A, 0xEC, 0x11, 0x82, 0x2B, 0x32, 0x38, 0x7A, 0x2B, 0xED, 0xBA, 0x01, 0x47, 0x7E, 0x3B, 0x67 }, // 9.0.0.
{ 0x30, 0x3F, 0x02, 0x7E, 0xD8, 0x38, 0xEC, 0xD7, 0x93, 0x25, 0x34, 0xB5, 0x30, 0xEB, 0xCA, 0x7A }, // 9.1.0.
{ 0x84, 0x67, 0xB6, 0x7F, 0x13, 0x11, 0xAE, 0xE6, 0x58, 0x9B, 0x19, 0xAF, 0x13, 0x6C, 0x80, 0x7A }, // 12.1.0.
{ 0x68, 0x3B, 0xCA, 0x54, 0xB8, 0x6F, 0x92, 0x48, 0xC3, 0x05, 0x76, 0x87, 0x88, 0x70, 0x79, 0x23 }, // 13.0.0.
{ 0xF0, 0x13, 0x37, 0x9A, 0xD5, 0x63, 0x51, 0xC3, 0xB4, 0x96, 0x35, 0xBC, 0x9C, 0xE8, 0x76, 0x81 }, // 14.0.0.
{ 0x6E, 0x77, 0x86, 0xAC, 0x83, 0x0A, 0x8D, 0x3E, 0x7D, 0xB7, 0x66, 0xA0, 0x22, 0xB7, 0x6E, 0x67 }, // 15.0.0.
{ 0x99, 0x22, 0x09, 0x57, 0xA7, 0xF9, 0x5E, 0x94, 0xFE, 0x78, 0x7F, 0x41, 0xD6, 0xE7, 0x56, 0xE6 }, // 16.0.0.
{ 0x71, 0xB9, 0xA6, 0xC0, 0xFF, 0x97, 0x6B, 0x0C, 0xB4, 0x40, 0xB9, 0xD5, 0x81, 0x5D, 0x81, 0x90 }, // 17.0.0.
};
//!TODO: Update on mkey changes.
static const u8 master_kekseed_t210b01[HOS_KB_VERSION_MAX - HOS_KB_VERSION_600 + 1][SE_KEY_128_SIZE] = {
{ 0x77, 0x60, 0x5A, 0xD2, 0xEE, 0x6E, 0xF8, 0x3C, 0x3F, 0x72, 0xE2, 0x59, 0x9D, 0xAC, 0x5E, 0x56 }, // 6.0.0.
{ 0x1E, 0x80, 0xB8, 0x17, 0x3E, 0xC0, 0x60, 0xAA, 0x11, 0xBE, 0x1A, 0x4A, 0xA6, 0x6F, 0xE4, 0xAE }, // 6.2.0.
{ 0x94, 0x08, 0x67, 0xBD, 0x0A, 0x00, 0x38, 0x84, 0x11, 0xD3, 0x1A, 0xDB, 0xDD, 0x8D, 0xF1, 0x8A }, // 7.0.0.
{ 0x5C, 0x24, 0xE3, 0xB8, 0xB4, 0xF7, 0x00, 0xC2, 0x3C, 0xFD, 0x0A, 0xCE, 0x13, 0xC3, 0xDC, 0x23 }, // 8.1.0.
{ 0x86, 0x69, 0xF0, 0x09, 0x87, 0xC8, 0x05, 0xAE, 0xB5, 0x7B, 0x48, 0x74, 0xDE, 0x62, 0xA6, 0x13 }, // 9.0.0.
{ 0x0E, 0x44, 0x0C, 0xED, 0xB4, 0x36, 0xC0, 0x3F, 0xAA, 0x1D, 0xAE, 0xBF, 0x62, 0xB1, 0x09, 0x82 }, // 9.1.0.
{ 0xE5, 0x41, 0xAC, 0xEC, 0xD1, 0xA7, 0xD1, 0xAB, 0xED, 0x03, 0x77, 0xF1, 0x27, 0xCA, 0xF8, 0xF1 }, // 12.1.0.
{ 0x52, 0x71, 0x9B, 0xDF, 0xA7, 0x8B, 0x61, 0xD8, 0xD5, 0x85, 0x11, 0xE4, 0x8E, 0x4F, 0x74, 0xC6 }, // 13.0.0.
{ 0xD2, 0x68, 0xC6, 0x53, 0x9D, 0x94, 0xF9, 0xA8, 0xA5, 0xA8, 0xA7, 0xC8, 0x8F, 0x53, 0x4B, 0x7A }, // 14.0.0.
{ 0xEC, 0x61, 0xBC, 0x82, 0x1E, 0x0F, 0x5A, 0xC3, 0x2B, 0x64, 0x3F, 0x9D, 0xD6, 0x19, 0x22, 0x2D }, // 15.0.0.
{ 0xA5, 0xEC, 0x16, 0x39, 0x1A, 0x30, 0x16, 0x08, 0x2E, 0xCF, 0x09, 0x6F, 0x5E, 0x7C, 0xEE, 0xA9 }, // 16.0.0.
{ 0x8D, 0xEE, 0x9E, 0x11, 0x36, 0x3A, 0x9B, 0x0A, 0x6A, 0xC7, 0xBB, 0xE9, 0xD1, 0x03, 0xF7, 0x80 }, // 17.0.0.
};
static const u8 console_keyseed[SE_KEY_128_SIZE] =
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
static const u8 console_keyseed_4xx[SE_KEY_128_SIZE] =
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
const u8 package2_keyseed[SE_KEY_128_SIZE] =
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
static void _hos_crit_error(const char *text)
{
gfx_con.mute = false;
gfx_printf("%k%s%k\n", TXT_CLR_ERROR, text, TXT_CLR_DEFAULT);
}
static void _se_lock(bool lock_se)
{
if (lock_se)
{
// Disable aes key read.
for (u32 i = 0; i < 16; i++)
se_key_acc_ctrl(i, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
// Disable RSA key read.
for (u32 i = 0; i < 2; i++)
se_rsa_acc_ctrl(i, SE_RSA_KEY_TBL_DIS_KEYREAD_FLAG);
SE(SE_TZRAM_SECURITY_REG) = 0; // Make SE TZRAM secure only.
SE(SE_CRYPTO_SECURITY_PERKEY_REG) = 0; // Make all AES keys access secure only.
SE(SE_RSA_SECURITY_PERKEY_REG) = 0; // Make all RSA keys access secure only.
SE(SE_SE_SECURITY_REG) &= ~SE_PERKEY_SETTING; // Make access lock regs secure only.
}
memset((void *)IPATCH_BASE, 0, 14 * sizeof(u32));
SB(SB_CSR) = SB_CSR_PIROM_DISABLE;
// This is useful for documenting the bits in the SE config registers, so we can keep it around.
/*gfx_printf("SE(SE_SE_SECURITY_REG) = %08X\n", SE(SE_SE_SECURITY_REG));
gfx_printf("SE(0x4) = %08X\n", SE(0x4));
gfx_printf("SE(SE_CRYPTO_SECURITY_PERKEY_REG) = %08X\n", SE(SE_CRYPTO_SECURITY_PERKEY_REG));
gfx_printf("SE(SE_RSA_SECURITY_PERKEY_REG) = %08X\n", SE(SE_RSA_SECURITY_PERKEY_REG));
for (u32 i = 0; i < 16; i++)
gfx_printf("%02X ", SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + i * 4) & 0xFF);
gfx_putc('\n');
for (u32 i = 0; i < 2; i++)
gfx_printf("%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG + i * 4) & 0xFF);
gfx_putc('\n');
gfx_hexdump(SE_BASE, (void *)SE_BASE, 0x400);*/
}
bool hos_eks_rw_try(u8 *buf, bool write)
{
for (u32 i = 0; i < 3; i++)
{
if (!write)
{
if (sdmmc_storage_read(&sd_storage, 0, 1, buf))
return true;
}
else
{
if (sdmmc_storage_write(&sd_storage, 0, 1, buf))
return true;
}
}
return false;
}
static void _hos_eks_get()
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
// Check if EKS already found and parsed.
if (!h_cfg.eks)
{
// Read EKS blob.
u8 *mbr = zalloc(SD_BLOCKSIZE);
if (!hos_eks_rw_try(mbr, false))
goto out;
// Decrypt EKS blob.
hos_eks_mbr_t *eks = (hos_eks_mbr_t *)(mbr + 0x80);
se_aes_crypt_ecb(14, DECRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Check if valid and for this unit.
if (eks->magic == HOS_EKS_MAGIC && eks->lot0 == FUSE(FUSE_OPT_LOT_CODE_0))
{
h_cfg.eks = eks;
return;
}
out:
free(mbr);
}
}
static void _hos_eks_save()
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
// EKS save. Only for 7.0.0 and up.
bool new_eks = false;
if (!h_cfg.eks)
{
h_cfg.eks = zalloc(SD_BLOCKSIZE);
new_eks = true;
}
// If matching blob doesn't exist, create it.
if (h_cfg.eks->enabled != HOS_EKS_TSEC_VER)
{
// Read EKS blob.
u8 *mbr = zalloc(SD_BLOCKSIZE);
if (!hos_eks_rw_try(mbr, false))
{
if (new_eks)
{
free(h_cfg.eks);
h_cfg.eks = NULL;
}
goto out;
}
// Get keys.
u8 *keys = (u8 *)zalloc(SZ_8K);
se_get_aes_keys(keys + SZ_4K, keys, SE_KEY_128_SIZE);
// Set magic and personalized info.
h_cfg.eks->magic = HOS_EKS_MAGIC;
h_cfg.eks->enabled = HOS_EKS_TSEC_VER;
h_cfg.eks->lot0 = FUSE(FUSE_OPT_LOT_CODE_0);
// Copy new keys.
memcpy(h_cfg.eks->tsec, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(h_cfg.eks->troot, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(h_cfg.eks->troot_dev, keys + 11 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
// Encrypt EKS blob.
u8 *eks = zalloc(SD_BLOCKSIZE);
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
se_aes_crypt_ecb(14, ENCRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Write EKS blob to SD.
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
hos_eks_rw_try(mbr, true);
free(eks);
free(keys);
out:
free(mbr);
}
}
void hos_eks_clear(u32 kb)
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
if (h_cfg.eks && kb >= HOS_KB_VERSION_700)
{
// Check if current Master key is enabled.
if (h_cfg.eks->enabled)
{
// Read EKS blob.
u8 *mbr = zalloc(SD_BLOCKSIZE);
if (!hos_eks_rw_try(mbr, false))
goto out;
// Disable current Master key version.
h_cfg.eks->enabled = 0;
// Encrypt EKS blob.
u8 *eks = zalloc(SD_BLOCKSIZE);
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
se_aes_crypt_ecb(14, ENCRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Write EKS blob to SD.
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
hos_eks_rw_try(mbr, true);
free(eks);
out:
free(mbr);
}
}
}
int hos_keygen_t210b01(u32 kb)
{
// Use SBK as Device key 4x unsealer and KEK for mkey in T210B01 units.
se_aes_unwrap_key(10, 14, console_keyseed_4xx);
// Derive master key.
se_aes_unwrap_key(7, 12, master_kekseed_t210b01[kb - HOS_KB_VERSION_600]);
se_aes_unwrap_key(7, 7, master_keyseed_retail);
// Derive latest pkg2 key.
se_aes_unwrap_key(8, 7, package2_keyseed);
return 1;
}
int hos_keygen(void *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt, bool stock, bool is_exo)
{
static bool sbk_wiped = false;
u32 retries = 0;
bool use_tsec = false;
tsec_keys_t tsec_keys;
kb_t *kb_data = (kb_t *)keyblob;
if (kb > HOS_KB_VERSION_MAX)
return 0;
if (h_cfg.t210b01)
return hos_keygen_t210b01(kb);
// Do Erista keygen.
// SBK is wiped. Try to restore it from fuses.
if (sbk_wiped)
{
if (fuse_set_sbk())
sbk_wiped = false;
else
return 1; // Continue with current SE keys.
}
// Use HOS EKS if it exists.
_hos_eks_get();
// Use tsec keygen for old firmware or if EKS keys does not exist for newer.
if (kb <= HOS_KB_VERSION_620 || !h_cfg.eks || (h_cfg.eks && h_cfg.eks->enabled != HOS_EKS_TSEC_VER))
use_tsec = true;
if (kb <= HOS_KB_VERSION_600)
{
tsec_ctxt->size = 0xF00;
tsec_ctxt->type = TSEC_FW_TYPE_OLD;
}
else if (kb == HOS_KB_VERSION_620)
{
tsec_ctxt->size = 0x2900;
tsec_ctxt->type = TSEC_FW_TYPE_EMU;
// Prepare smmu tsec page for 6.2.0.
u8 *tsec_paged = (u8 *)smmu_page_zalloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size);
tsec_ctxt->fw = tsec_paged;
}
else if (use_tsec) // 7.0.0+
{
/*
* 7.0.0/8.1.0 tsec fw are 0x3000/0x3300.
* Unused here because of THK.
*/
// Use custom TSEC Hovi Keygen firmware.
tsec_ctxt->fw = sd_file_read("bootloader/sys/thk.bin", NULL);
if (!tsec_ctxt->fw)
{
_hos_crit_error("\nFailed to load thk.bin");
return 0;
}
tsec_ctxt->size = 0x1F00;
tsec_ctxt->type = TSEC_FW_TYPE_NEW;
}
else if (h_cfg.eks)
{
// EKS found. Set TSEC keys.
se_aes_key_set(12, h_cfg.eks->tsec, SE_KEY_128_SIZE);
se_aes_key_set(13, h_cfg.eks->troot, SE_KEY_128_SIZE);
se_aes_key_set(11, h_cfg.eks->troot_dev, SE_KEY_128_SIZE);
}
// Get TSEC key.
while (use_tsec && tsec_query(&tsec_keys, tsec_ctxt) < 0)
{
memset(&tsec_keys, 0x00, 0x20);
retries++;
// We rely on racing conditions, make sure we cover even the unluckiest cases.
if (retries > 15)
{
_hos_crit_error("\nFailed to get TSEC keys. Please try again.");
return 0;
}
}
if (kb >= HOS_KB_VERSION_700)
{
// For 7.0.0 and up, save EKS slot if it doesn't exist.
if (use_tsec)
{
_hos_eks_save();
free(tsec_ctxt->fw);
}
// Use 8.1.0 for 7.0.0 otherwise the proper one.
u32 mkey_idx = 0;
if (kb >= HOS_KB_VERSION_810)
mkey_idx = kb - HOS_KB_VERSION_810;
if (!is_exo)
{
// Derive Package2 key in secmon compatible way.
se_aes_unwrap_key(7, 13, master_kekseed_t210_tsec_v4[mkey_idx]);
se_aes_unwrap_key(7, 7, master_keyseed_retail);
se_aes_unwrap_key(8, 7, package2_keyseed);
}
else
{
se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tsec_keys.tmp);
// Derive device keys.
se_aes_unwrap_key(10, 15, console_keyseed_4xx);
se_aes_unwrap_key(15, 15, console_keyseed);
// Derive master kek.
se_aes_unwrap_key(13, 13, master_kekseed_t210_tsec_v4[mkey_idx]);
// Derive device master key and master key.
se_aes_unwrap_key(12, 13, master_keyseed_4xx);
se_aes_unwrap_key(13, 13, master_keyseed_retail);
// Package2 key.
se_aes_unwrap_key(8, 13, package2_keyseed);
}
}
else if (kb == HOS_KB_VERSION_620)
{
// Set TSEC key.
se_aes_key_set(12, tsec_keys.tsec, SE_KEY_128_SIZE);
// Set TSEC root key.
se_aes_key_set(13, tsec_keys.tsec_root, SE_KEY_128_SIZE);
if (!is_exo)
{
// Derive Package2 key in secmon compatible way.
se_aes_key_set(8, tsec_keys.tsec_root, SE_KEY_128_SIZE);
se_aes_unwrap_key(8, 8, master_kekseed_620);
se_aes_unwrap_key(8, 8, master_keyseed_retail);
se_aes_unwrap_key(8, 8, package2_keyseed);
}
else
{
// Decrypt keyblob and set keyslots for Exosphere 2.
se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tsec_keys.tmp);
// Derive device keys.
se_aes_unwrap_key(10, 15, console_keyseed_4xx);
se_aes_unwrap_key(15, 15, console_keyseed);
// Derive master kek.
se_aes_unwrap_key(13, 13, master_kekseed_620);
// Derive device master key and master key.
se_aes_unwrap_key(12, 13, master_keyseed_4xx);
se_aes_unwrap_key(13, 13, master_keyseed_retail);
// Package2 key.
se_aes_unwrap_key(8, 13, package2_keyseed);
}
}
else
{
se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
se_key_acc_ctrl(14, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
// Set TSEC key.
se_aes_key_set(13, tsec_keys.tsec, SE_KEY_128_SIZE);
// Derive keyblob keys from TSEC+SBK.
se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tsec_keys.tsec);
se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, keyblob_keyseeds[kb]);
se_aes_unwrap_key(13, 14, tsec_keys.tsec);
// Clear SBK.
//se_aes_key_clear(14);
/*
// Verify keyblob CMAC.
u8 cmac[SE_KEY_128_SIZE];
se_aes_unwrap_key(11, 13, cmac_keyseed);
se_aes_cmac(cmac, SE_KEY_128_SIZE, 11, (void *)kb_data->ctr, sizeof(kb_data->ctr) + sizeof(kb_data->keys));
if (!memcmp(kb_data->cmac, cmac, SE_KEY_128_SIZE))
return 0;
*/
se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, cmac_keyseed);
se_aes_unwrap_key(11, 13, cmac_keyseed);
// Decrypt keyblob and set keyslots.
se_aes_crypt_ctr(13, &kb_data->keys, sizeof(kb_keys_t), &kb_data->keys, sizeof(kb_keys_t), kb_data->ctr);
se_aes_key_set(11, kb_data->keys.package1_key, SE_KEY_128_SIZE);
se_aes_key_set(12, kb_data->keys.master_kekseed, SE_KEY_128_SIZE);
se_aes_key_set(13, kb_data->keys.master_kekseed, SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tsec, master_keyseed_retail);
if (!is_exo)
{
switch (kb)
{
case HOS_KB_VERSION_100:
case HOS_KB_VERSION_300:
case HOS_KB_VERSION_301:
se_aes_unwrap_key(13, 15, console_keyseed);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case HOS_KB_VERSION_400:
se_aes_unwrap_key(13, 15, console_keyseed_4xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
sbk_wiped = true;
break;
case HOS_KB_VERSION_500:
case HOS_KB_VERSION_600:
se_aes_unwrap_key(10, 15, console_keyseed_4xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
sbk_wiped = true;
break;
}
}
else // Exosphere 2.
{
se_aes_unwrap_key(10, 15, console_keyseed_4xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(13, 12, master_keyseed_retail);
se_aes_unwrap_key(12, 12, master_keyseed_4xx);
}
// Package2 key.
se_key_acc_ctrl(8, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
se_aes_unwrap_key(8, !is_exo ? 12 : 13, package2_keyseed);
}
return 1;
}
static int _read_emmc_pkg1(launch_ctxt_t *ctxt)
{
const u32 pk1_offset = h_cfg.t210b01 ? sizeof(bl_hdr_t210b01_t) : 0; // Skip T210B01 OEM header.
u32 bootloader_offset = PKG1_BOOTLOADER_MAIN_OFFSET;
ctxt->pkg1 = (void *)malloc(PKG1_BOOTLOADER_SIZE);
try_load:
// Read package1.
emummc_storage_set_mmc_partition(EMMC_BOOT0);
emummc_storage_read(bootloader_offset / EMMC_BLOCKSIZE, PKG1_BOOTLOADER_SIZE / EMMC_BLOCKSIZE, ctxt->pkg1);
ctxt->pkg1_id = pkg1_identify(ctxt->pkg1 + pk1_offset);
if (!ctxt->pkg1_id)
{
// Check if wrong pkg1 was flashed.
bool wrong_pkg1;
const u32 pkg1_erista_check = ((bl_hdr_t210b01_t *)ctxt->pkg1)->entrypoint;
const u32 pkg1_mariko_check = *(u32 *)(ctxt->pkg1 + sizeof(pk1_hdr_t) * 2);
if (!h_cfg.t210b01) // For Erista check if start is 0 and entrypoint matches Mariko.
wrong_pkg1 = *(u32 *)ctxt->pkg1 == 0 && pkg1_erista_check == PKG1_MARIKO_ON_ERISTA_MAGIC;
else // For Mariko check if start is not 0 and build id. It works for 8.0.0 Erista pkg1 and up.
wrong_pkg1 = *(u32 *)ctxt->pkg1 != 0 && pkg1_mariko_check == PKG1_ERISTA_ON_MARIKO_MAGIC;
if (wrong_pkg1)
{
_hos_crit_error("Wrong pkg1 flashed:");
EPRINTFARGS("%s pkg1 on %s!",
!h_cfg.t210b01 ? "Mariko" : "Erista", !h_cfg.t210b01 ? "Erista" : "Mariko");
}
else
{
_hos_crit_error("Unknown pkg1 version.");
EPRINTFARGS("HOS version not supported!%s",
(emu_cfg.enabled && !h_cfg.emummc_force_disable) ? "\nOr emuMMC corrupt!" : "");
}
// Try backup bootloader.
if (bootloader_offset != PKG1_BOOTLOADER_BACKUP_OFFSET)
{
EPRINTF("\nTrying backup bootloader...");
bootloader_offset = PKG1_BOOTLOADER_BACKUP_OFFSET;
goto try_load;
}
return 0;
}
gfx_printf("Identified pkg1 and mkey %d\n\n", ctxt->pkg1_id->kb);
// Read the correct keyblob for older HOS versions.
if (ctxt->pkg1_id->kb <= HOS_KB_VERSION_600)
{
ctxt->keyblob = (u8 *)zalloc(EMMC_BLOCKSIZE);
emummc_storage_read(PKG1_HOS_KEYBLOBS_OFFSET / EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob);
}
return 1;
}
static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt)
{
u8 *bctBuf = NULL;
emummc_storage_set_mmc_partition(EMMC_GPP);
// Parse eMMC GPT.
LIST_INIT(gpt);
emmc_gpt_parse(&gpt);
DPRINTF("Parsed GPT\n");
// Find package2 partition.
emmc_part_t *pkg2_part = emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part)
goto out;
// Read in package2 header and get package2 real size.
const u32 BCT_SIZE = SZ_16K;
bctBuf = (u8 *)malloc(BCT_SIZE);
emmc_part_read(pkg2_part, BCT_SIZE / EMMC_BLOCKSIZE, 1, bctBuf);
u32 *hdr = (u32 *)(bctBuf + 0x100);
u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3];
DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size);
// Read in Boot Config.
emmc_part_read(pkg2_part, 0, BCT_SIZE / EMMC_BLOCKSIZE, bctBuf);
// Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, EMMC_BLOCKSIZE);
DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned);
ctxt->pkg2 = malloc(pkg2_size_aligned);
ctxt->pkg2_size = pkg2_size;
emmc_part_read(pkg2_part, BCT_SIZE / EMMC_BLOCKSIZE,
pkg2_size_aligned / EMMC_BLOCKSIZE, ctxt->pkg2);
out:
emmc_gpt_free(&gpt);
return bctBuf;
}
static void _free_launch_components(launch_ctxt_t *ctxt)
{
// Free the malloc'ed guaranteed addresses.
free(ctxt->fss0);
free(ctxt->keyblob);
free(ctxt->pkg1);
free(ctxt->pkg2);
free(ctxt->warmboot);
free(ctxt->kip1_patches);
}
static bool _get_fs_exfat_compatible(link_t *info, u32 *hos_revision)
{
u32 fs_ids_cnt;
u32 sha_buf[32 / sizeof(u32)];
kip1_id_t *kip_ids;
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
if (strcmp((char *)ki->kip1->name, "FS"))
continue;
if (!se_calc_sha256_oneshot(sha_buf, ki->kip1, ki->size))
break;
pkg2_get_ids(&kip_ids, &fs_ids_cnt);
for (int fs_idx = fs_ids_cnt - 1; fs_idx >= 0; fs_idx--)
{
if (!memcmp(sha_buf, kip_ids[fs_idx].hash, 8))
{
// HOS Api special handling.
if ((fs_idx & ~1) == 16) // Check if it's 5.1.0.
*hos_revision = 1;
else if ((fs_idx & ~1) == 34) // Check if it's 10.2.0.
*hos_revision = 2;
// Check if FAT32-only.
if (!(fs_idx & 1))
return false;
// FS is FAT32 + exFAT.
break;
}
}
break;
}
// FAT32 + exFAT or unknown FS version.
return true;
}
int hos_launch(ini_sec_t *cfg)
{
u8 kb;
u32 secmon_base;
u32 warmboot_base;
bool is_exo = false;
launch_ctxt_t ctxt = {0};
tsec_ctxt_t tsec_ctxt = {0};
volatile secmon_mailbox_t *secmon_mailbox;
minerva_change_freq(FREQ_1600);
list_init(&ctxt.kip1_list);
ctxt.cfg = cfg;
if (!gfx_con.mute)
gfx_clear_grey(0x1B);
gfx_con_setpos(0, 0);
gfx_puts("Initializing...\n\n");
// Initialize eMMC/emuMMC.
int res = emummc_storage_init_mmc();
if (res)
{
if (res == 2)
_hos_crit_error("Failed to init eMMC.");
else
_hos_crit_error("Failed to init emuMMC.");
goto error;
}
// Check if SD Card is GPT.
if (sd_is_gpt())
{
_hos_crit_error("SD has GPT only!");
goto error;
}
// Try to parse config if present.
if (ctxt.cfg && !parse_boot_config(&ctxt))
{
_hos_crit_error("Wrong ini cfg or missing/corrupt files!");
goto error;
}
// Read package1 and the correct keyblob.
if (!_read_emmc_pkg1(&ctxt))
{
// Check if stock is enabled and device can boot in OFW.
if (ctxt.stock && (h_cfg.t210b01 || !tools_autorcm_enabled()))
{
emmc_end();
WPRINTF("\nRebooting to OFW in 5s...");
msleep(5000);
power_set_state(REBOOT_BYPASS_FUSES);
}
goto error;
}
kb = ctxt.pkg1_id->kb;
bool emummc_enabled = emu_cfg.enabled && !h_cfg.emummc_force_disable;
// Enable emummc patching.
if (emummc_enabled)
{
if (ctxt.stock)
{
_hos_crit_error("Stock emuMMC is not supported yet!");
goto error;
}
ctxt.atmosphere = true; // Set atmosphere patching in case of no fss0.
config_kip1patch(&ctxt, "emummc");
}
else if (!emu_cfg.enabled && ctxt.emummc_forced)
{
_hos_crit_error("emuMMC is forced but not enabled!");
goto error;
}
// If Auto NOGC is enabled, check if burnt fuses lower than installed HOS fuses and apply NOGC patch.
// For emuMMC, unconditionally enable NOGC when burnt fuses are higher than installed HOS fuses.
// Disable Auto NOGC in stock to prevent black screen (fatal error). Use kip1patch=nogc to force it.
if (!ctxt.stock)
{
u32 fuses = fuse_read_odm(7);
if ((h_cfg.autonogc &&
(
(!(fuses & ~0xF) && (ctxt.pkg1_id->fuses >= 5)) || // LAFW v2, 4.0.0+
(!(fuses & ~0x3FF) && (ctxt.pkg1_id->fuses >= 11)) || // LAFW v3, 9.0.0+
(!(fuses & ~0x1FFF) && (ctxt.pkg1_id->fuses >= 14)) || // LAFW v4, 11.0.0+
// Detection broken! Use kip1patch=nogc // LAFW v5, 12.0.0+
(!(fuses & ~0x3FFF) && (ctxt.pkg1_id->fuses >= 15)) // LAFW v5, 12.0.2+
)
)
|| ((emummc_enabled) &&
(
((fuses & 0x400) && (ctxt.pkg1_id->fuses <= 10)) || // HOS 9.0.0+ fuses burnt.
((fuses & 0x2000) && (ctxt.pkg1_id->fuses <= 13)) || // HOS 11.0.0+ fuses burnt.
// Detection broken! Use kip1patch=nogc // HOS 12.0.0+
((fuses & 0x4000) && (ctxt.pkg1_id->fuses <= 14)) // HOS 12.0.2+ fuses burnt.
)
))
config_kip1patch(&ctxt, "nogc");
}
gfx_printf("Loaded config and pkg1\n%s mode\n", ctxt.stock ? "Stock" : "CFW");
// Check if secmon is exosphere.
if (ctxt.secmon)
is_exo = !memcmp((void *)((u8 *)ctxt.secmon + ctxt.secmon_size - 4), "LENY", 4);
// Get secmon and warmboot bases.
const pkg1_id_t *pk1_latest = pkg1_get_latest();
secmon_base = is_exo ? pk1_latest->secmon_base : ctxt.pkg1_id->secmon_base;
warmboot_base = is_exo ? pk1_latest->warmboot_base : ctxt.pkg1_id->warmboot_base;
// Set package1 and tsec fw offsets.
tsec_ctxt.fw = (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off;
tsec_ctxt.pkg1 = ctxt.pkg1;
tsec_ctxt.pkg11_off = ctxt.pkg1_id->pkg11_off;
// Generate keys.
if (!hos_keygen(ctxt.keyblob, kb, &tsec_ctxt, ctxt.stock, is_exo))
goto error;
gfx_puts("Generated keys\n");
// Decrypt and unpack package1 if we require parts of it.
if (!ctxt.warmboot || !ctxt.secmon)
{
// Decrypt PK1 or PK11.
if (kb <= HOS_KB_VERSION_600 || h_cfg.t210b01)
{
if (!pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1))
{
_hos_crit_error("Pkg1 decryption failed!");
// Check if T210B01 BEK is missing or wrong.
if (h_cfg.t210b01)
{
u32 bek_vector[4] = {0};
se_aes_crypt_ecb(13, ENCRYPT, bek_vector, SE_KEY_128_SIZE, bek_vector, SE_KEY_128_SIZE);
if (bek_vector[0] == 0x59C14895) // Encrypted zeroes first 32bits.
EPRINTF("Pkg1 corrupt?");
else
EPRINTF("BEK is missing!");
}
goto error;
}
}
// Unpack PK11.
if (h_cfg.t210b01 || (kb <= HOS_KB_VERSION_620 && !emummc_enabled))
{
// Skip T210B01 OEM header.
u32 pk1_offset = 0;
if (h_cfg.t210b01)
pk1_offset = sizeof(bl_hdr_t210b01_t);
pkg1_unpack((void *)warmboot_base, &ctxt.warmboot_size,
!is_exo ? (void *)ctxt.pkg1_id->secmon_base : NULL, NULL,
ctxt.pkg1_id, ctxt.pkg1 + pk1_offset);
gfx_puts("Decrypted & unpacked pkg1\n");
}
else
{
_hos_crit_error("No mandatory pkg1 files provided!");
goto error;
}
}
// Configure and manage Warmboot binary.
if (!pkg1_warmboot_config(&ctxt, warmboot_base, ctxt.pkg1_id->fuses, kb))
{
// Can only happen on T210B01.
_hos_crit_error("\nFailed to match warmboot with fuses!\nIf you continue, sleep wont work!");
gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n");
display_backlight_brightness(h_cfg.backlight, 1000);
if (!(btn_wait() & BTN_POWER))
goto error;
}
// Replace 'warmboot.bin' if requested.
if (ctxt.warmboot)
memcpy((void *)warmboot_base, ctxt.warmboot, ctxt.warmboot_size);
else if (!h_cfg.t210b01)
{
// Patch warmboot on T210 to allow downgrading.
if (kb >= HOS_KB_VERSION_700)
{
_hos_crit_error("No warmboot provided!");
goto error;
}
pkg1_warmboot_patch((void *)&ctxt);
}
// Replace 'SecureMonitor' if requested or patch Pkg2 checks if needed.
if (ctxt.secmon)
memcpy((void *)secmon_base, ctxt.secmon, ctxt.secmon_size);
else
pkg1_secmon_patch((void *)&ctxt, secmon_base, h_cfg.t210b01);
gfx_puts("Loaded warmboot and secmon\n");
// Read package2.
u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt);
if (!bootConfigBuf)
{
_hos_crit_error("Pkg2 read failed!");
goto error;
}
gfx_puts("Read pkg2\n");
// Decrypt package2 and parse KIP1 blobs in INI1 section.
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2, kb, is_exo);
if (!pkg2_hdr)
{
_hos_crit_error("Pkg2 decryption failed!\npkg1/pkg2 mismatch or old hekate!");
// Clear EKS slot, in case something went wrong with tsec keygen.
hos_eks_clear(kb);
goto error;
}
LIST_INIT(kip1_info);
if (!pkg2_parse_kips(&kip1_info, pkg2_hdr, &ctxt.new_pkg2))
{
_hos_crit_error("INI1 parsing failed!");
goto error;
}
gfx_puts("Parsed ini1\n");
// Use the kernel included in package2 in case we didn't load one already.
if (!ctxt.kernel)
{
ctxt.kernel = pkg2_hdr->data;
ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL];
if (!ctxt.stock && (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere))
{
// Hash only Kernel when it embeds INI1.
u8 kernel_hash[0x20];
if (!ctxt.new_pkg2)
se_calc_sha256_oneshot(kernel_hash, ctxt.kernel, ctxt.kernel_size);
else
se_calc_sha256_oneshot(kernel_hash, ctxt.kernel + PKG2_NEWKERN_START,
pkg2_newkern_ini1_start - PKG2_NEWKERN_START);
ctxt.pkg2_kernel_id = pkg2_identify(kernel_hash);
if (!ctxt.pkg2_kernel_id)
{
_hos_crit_error("Failed to identify kernel!");
goto error;
}
// In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode.
kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset;
if (kernel_patchset != NULL)
{
gfx_printf("%kPatching kernel%k\n", TXT_CLR_ORANGE, TXT_CLR_DEFAULT);
u32 *temp;
for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++)
{
if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS)
|| (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN && !(ctxt.atmosphere && ctxt.secmon))
|| (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH))
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH)
{
temp = (u32 *)kernel_patchset[i].ptr;
for (u32 j = 0; j < kernel_patchset[i].val; j++)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j];
}
else if (kernel_patchset[i].id < SVC_VERIFY_DS)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
}
}
}
}
// Merge extra KIP1s into loaded ones.
LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link)
pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1);
// Check if FS is compatible with exFAT and if 5.1.0.
if (!ctxt.stock && (sd_fs.fs_type == FS_EXFAT || kb == HOS_KB_VERSION_500 || ctxt.pkg1_id->fuses == 13))
{
bool exfat_compat = _get_fs_exfat_compatible(&kip1_info, &ctxt.exo_ctx.hos_revision);
if (sd_fs.fs_type == FS_EXFAT && !exfat_compat)
{
_hos_crit_error("SD Card is exFAT but installed HOS driver\nonly supports FAT32!");
goto error;
}
}
// Patch kip1s in memory if needed.
const char *failed_patch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches);
if (failed_patch != NULL)
{
EHPRINTFARGS("Failed to apply '%s'!", failed_patch);
bool emmc_patch_failed = !strcmp(failed_patch, "emummc");
if (!emmc_patch_failed)
{
gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n");
display_backlight_brightness(h_cfg.backlight, 1000);
}
if (emmc_patch_failed || !(btn_wait() & BTN_POWER))
goto error; // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated!
}
// Rebuild and encrypt package2.
pkg2_build_encrypt((void *)PKG2_LOAD_ADDR, &ctxt, &kip1_info, is_exo);
// Configure Exosphere if secmon is replaced.
if (is_exo)
config_exosphere(&ctxt, warmboot_base);
// Unmount SD card and eMMC.
sd_end();
emmc_end();
// Close AHB aperture. Important when stock old secmon is used.
mc_disable_ahb_redirect();
gfx_printf("Rebuilt & loaded pkg2\n\n%kBooting...%k\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT);
// Clear pkg1/pkg2 keys.
se_aes_key_clear(8);
se_aes_key_clear(11);
// Clear derived master key in case of Erista and 7.0.0+
se_aes_key_clear(9);
// Set secmon mailbox pkg2 ready state.
u32 pkg1_state_pkg2_ready = PKG1_STATE_PKG2_READY;
// Finalize per firmware key access. Skip access control if Exosphere 2.
switch (kb | (is_exo << 7))
{
case HOS_KB_VERSION_100:
case HOS_KB_VERSION_300:
case HOS_KB_VERSION_301:
se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
pkg1_state_pkg2_ready = PKG1_STATE_PKG2_READY_OLD;
break;
case HOS_KB_VERSION_400:
case HOS_KB_VERSION_500:
case HOS_KB_VERSION_600:
se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
se_key_acc_ctrl(15, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
break;
}
// Clear BCT area for retail units and copy it over if dev unit.
if (kb <= HOS_KB_VERSION_500 && !is_exo)
{
memset((void *)SECMON_BCT_CFG_ADDR, 0, SZ_4K + SZ_8K);
if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV)
memcpy((void *)SECMON_BCT_CFG_ADDR, bootConfigBuf, SZ_4K);
}
else
{
memset((void *)SECMON6_BCT_CFG_ADDR, 0, SZ_2K);
if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV)
memcpy((void *)SECMON6_BCT_CFG_ADDR, bootConfigBuf, SZ_2K);
}
// Finalize MC carveout.
if (kb <= HOS_KB_VERSION_301 && !is_exo)
mc_config_carveout();
// Lock SE before starting 'SecureMonitor' if < 6.2.0, otherwise lock bootrom and ipatches.
_se_lock(kb <= HOS_KB_VERSION_600 && !is_exo);
// Reset sysctr0 counters. Mandatory for 6.2.0 and up.
for (u32 i = 0; i < SYSCTR0_COUNTERS; i++)
SYSCTR0(SYSCTR0_COUNTERS_BASE + i * sizeof(u32)) = 0;
// NX Bootloader locks LP0 Carveout secure scratch registers.
//pmc_scratch_lock(PMC_SEC_LOCK_LP0_PARAMS);
// Set secmon mailbox address and clear it.
if (kb >= HOS_KB_VERSION_700 || is_exo)
{
memset((void *)SECMON7_MAILBOX_ADDR, 0, 0x200);
secmon_mailbox = (secmon_mailbox_t *)(SECMON7_MAILBOX_ADDR + SECMON_STATE_OFFSET);
}
else
{
if (kb <= HOS_KB_VERSION_301)
memset((void *)SECMON_MAILBOX_ADDR, 0, 0x200);
secmon_mailbox = (secmon_mailbox_t *)(SECMON_MAILBOX_ADDR + SECMON_STATE_OFFSET);
}
// Start directly from PKG2 ready signal and reset outgoing value.
secmon_mailbox->in = pkg1_state_pkg2_ready;
secmon_mailbox->out = SECMON_STATE_NOT_READY;
// Disable display. This must be executed before secmon to provide support for all fw versions.
display_end();
// Override uCID if set.
EMC(EMC_SCRATCH0) = ctxt.ucid;
// Hold USBD, USB2, AHBDMA and APBDMA in reset for SoC state validation on sleep.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_USBD);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_AHBDMA) | BIT(CLK_H_APBDMA) | BIT(CLK_H_USB2);
// Scale down RAM OC if enabled.
minerva_prep_boot_freq();
// Flush cache and disable MMU.
bpmp_mmu_disable();
bpmp_clk_rate_set(BPMP_CLK_NORMAL);
// Launch secmon.
ccplex_boot_cpu0(secmon_base, true);
// Halt ourselves in wait-event state.
while (true)
bpmp_halt();
error:
_free_launch_components(&ctxt);
emmc_end();
EPRINTF("\nFailed to launch HOS!");
return 0;
}