1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-23 10:22:00 +00:00
hekate/bootloader/hos/hos.c
Kostas Missos 5ed875ce90 Make tsec checks faster and cover unluckiest cases
+ changes for readability
2018-12-16 16:55:56 +02:00

618 lines
19 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 st4rk
* Copyright (c) 2018 Ced2911
* Copyright (c) 2018 CTCaer
* Copyright (c) 2018 balika011
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hos.h"
#include "hos_config.h"
#include "secmon_exo.h"
#include "../config/config.h"
#include "../gfx/di.h"
#include "../mem/heap.h"
#include "../mem/mc.h"
#include "../sec/se.h"
#include "../sec/se_t210.h"
#include "../sec/tsec.h"
#include "../soc/cluster.h"
#include "../soc/fuse.h"
#include "../soc/pmc.h"
#include "../soc/smmu.h"
#include "../soc/t210.h"
#include "../storage/nx_emmc.h"
#include "../storage/sdmmc.h"
#include "../utils/util.h"
#include "../gfx/gfx.h"
extern gfx_ctxt_t gfx_ctxt;
extern gfx_con_t gfx_con;
extern hekate_config h_cfg;
extern void sd_unmount();
//#define DPRINTF(...) gfx_printf(&gfx_con, __VA_ARGS__)
#define DPRINTF(...)
static const u8 keyblob_keyseeds[][0x10] = {
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, //1.0.0
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, //3.0.0
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, //3.0.1
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, //4.0.0
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, //5.0.0
{ 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } //6.0.0
};
static const u8 cmac_keyseed[0x10] =
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
static const u8 master_keyseed_retail[0x10] =
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
static const u8 console_keyseed[0x10] =
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
static const u8 key8_keyseed[] =
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
static const u8 master_keyseed_4xx_5xx_610[0x10] =
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
static const u8 master_keyseed_620[0x10] =
{ 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A };
static const u8 console_keyseed_4xx_5xx[0x10] =
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
static void _se_lock(bool lock_se)
{
if (lock_se)
{
for (u32 i = 0; i < 16; i++)
se_key_acc_ctrl(i, 0x15);
for (u32 i = 0; i < 2; i++)
se_rsa_acc_ctrl(i, 1);
SE(0x4) = 0; // Make this reg secure only.
SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = 0; // Make all key access regs secure only.
SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = 0; // Make all RSA access regs secure only.
SE(SE_SECURITY_0) &= 0xFFFFFFFB; // Make access lock regs secure only.
}
memset((void *)IPATCH_BASE, 0, 14 * sizeof(u32));
SB(SB_CSR) = 0x10; // Protected IROM enable.
// This is useful for documenting the bits in the SE config registers, so we can keep it around.
/*gfx_printf(&gfx_con, "SE(SE_SECURITY_0) = %08X\n", SE(SE_SECURITY_0));
gfx_printf(&gfx_con, "SE(0x4) = %08X\n", SE(0x4));
gfx_printf(&gfx_con, "SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET));
gfx_printf(&gfx_con, "SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET));
for(u32 i = 0; i < 16; i++)
gfx_printf(&gfx_con, "%02X ", SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc(&gfx_con, '\n');
for(u32 i = 0; i < 2; i++)
gfx_printf(&gfx_con, "%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc(&gfx_con, '\n');
gfx_hexdump(&gfx_con, SE_BASE, (void *)SE_BASE, 0x400);*/
}
void _pmc_scratch_lock(u32 kb)
{
switch (kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
PMC(APBDEV_PMC_SEC_DISABLE) = 0x7FFFF3;
PMC(APBDEV_PMC_SEC_DISABLE2) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE3) = 0xFFAFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE4) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE6) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE7) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE8) = 0xFFAAFFFF;
break;
case KB_FIRMWARE_VERSION_400:
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
PMC(APBDEV_PMC_SEC_DISABLE2) |= 0x3FCFFFF;
PMC(APBDEV_PMC_SEC_DISABLE4) |= 0x3F3FFFFF;
PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE6) |= 0xF3FFC00F;
PMC(APBDEV_PMC_SEC_DISABLE7) |= 0x3FFFFF;
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xFF;
break;
}
}
void _sysctr0_reset()
{
SYSCTR0(SYSCTR0_CNTFID0) = 19200000;
SYSCTR0(SYSCTR0_CNTCR) = 0;
SYSCTR0(SYSCTR0_COUNTERID0) = 0;
SYSCTR0(SYSCTR0_COUNTERID1) = 0;
SYSCTR0(SYSCTR0_COUNTERID2) = 0;
SYSCTR0(SYSCTR0_COUNTERID3) = 0;
SYSCTR0(SYSCTR0_COUNTERID4) = 0;
SYSCTR0(SYSCTR0_COUNTERID5) = 0;
SYSCTR0(SYSCTR0_COUNTERID6) = 0;
SYSCTR0(SYSCTR0_COUNTERID7) = 0;
SYSCTR0(SYSCTR0_COUNTERID8) = 0;
SYSCTR0(SYSCTR0_COUNTERID9) = 0;
SYSCTR0(SYSCTR0_COUNTERID10) = 0;
SYSCTR0(SYSCTR0_COUNTERID11) = 0;
}
int keygen(u8 *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt)
{
u8 tmp[0x20];
u32 retries = 0;
tsec_ctxt->size = 0xF00;
if (kb > KB_FIRMWARE_VERSION_MAX)
return 0;
// Get TSEC key.
if (kb >= KB_FIRMWARE_VERSION_620)
{
tsec_ctxt->size = 0x2900;
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size);
tsec_ctxt->fw = tsec_paged;
}
while (tsec_query(tmp, kb, tsec_ctxt) < 0)
{
memset(tmp, 0x00, 0x20);
retries++;
// We rely on racing conditions, make sure we cover even the unluckiest cases.
if (retries > 15)
{
gfx_printf(&gfx_con, "%k\nFailed to get TSEC keys. Please try again.%k\n\n", 0xFFFF0000, 0xFFCCCCCC);
return 0;
}
}
if (kb >= KB_FIRMWARE_VERSION_620)
{
// Set TSEC key.
se_aes_key_set(12, tmp, 0x10);
// Set TSEC root key.
se_aes_key_set(13, tmp + 0x10, 0x10);
// Package2 key.
se_aes_key_set(8, tmp + 0x10, 0x10);
se_aes_unwrap_key(8, 8, master_keyseed_620);
se_aes_unwrap_key(8, 8, master_keyseed_retail);
se_aes_unwrap_key(8, 8, key8_keyseed);
}
else
{
se_key_acc_ctrl(13, 0x15);
se_key_acc_ctrl(14, 0x15);
// Set TSEC key.
se_aes_key_set(13, tmp, 0x10);
// Derive keyblob keys from TSEC+SBK.
se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tmp);
se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[kb]);
se_aes_unwrap_key(13, 14, tmp);
// Clear SBK.
se_aes_key_clear(14);
//TODO: verify keyblob CMAC.
//se_aes_unwrap_key(11, 13, cmac_keyseed);
//se_aes_cmac(tmp, 0x10, 11, keyblob + 0x10, 0xA0);
//if (!memcmp(keyblob, tmp, 0x10))
// return 0;
se_aes_crypt_block_ecb(13, 0, tmp, cmac_keyseed);
se_aes_unwrap_key(11, 13, cmac_keyseed);
// Decrypt keyblob and set keyslots.
se_aes_crypt_ctr(13, keyblob + 0x20, 0x90, keyblob + 0x20, 0x90, keyblob + 0x10);
se_aes_key_set(11, keyblob + 0x20 + 0x80, 0x10); // Package1 key.
se_aes_key_set(12, keyblob + 0x20, 0x10);
se_aes_key_set(13, keyblob + 0x20, 0x10);
se_aes_crypt_block_ecb(12, 0, tmp, master_keyseed_retail);
switch (kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
se_aes_unwrap_key(13, 15, console_keyseed);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_400:
se_aes_unwrap_key(13, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
}
// Package2 key.
se_key_acc_ctrl(8, 0x15);
se_aes_unwrap_key(8, 12, key8_keyseed);
}
return 1;
}
static int _read_emmc_pkg1(launch_ctxt_t *ctxt)
{
int res = 0;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4);
// Read package1.
ctxt->pkg1 = (void *)malloc(0x40000);
sdmmc_storage_set_mmc_partition(&storage, 1);
sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, ctxt->pkg1);
ctxt->pkg1_id = pkg1_identify(ctxt->pkg1);
if (!ctxt->pkg1_id)
{
gfx_printf(&gfx_con, "%kUnknown pkg1,\nVersion (= '%s').%k\n", 0xFFFF0000, (char *)ctxt->pkg1 + 0x10, 0xFFCCCCCC);
goto out;
}
gfx_printf(&gfx_con, "Identified pkg1 ('%s'),\nKeyblob version %d\n\n", (char *)(ctxt->pkg1 + 0x10), ctxt->pkg1_id->kb);
// Read the correct keyblob.
ctxt->keyblob = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob);
res = 1;
out:;
sdmmc_storage_end(&storage);
return res;
}
static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt)
{
u8 *bctBuf = NULL;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
if (!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4))
return NULL;
sdmmc_storage_set_mmc_partition(&storage, 0);
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &storage);
DPRINTF("Parsed GPT\n");
// Find package2 partition.
emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part)
goto out;
// Read in package2 header and get package2 real size.
//TODO: implement memalign for DMA buffers.
static const u32 BCT_SIZE = 0x4000;
bctBuf = (u8 *)malloc(BCT_SIZE);
nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE, 1, bctBuf);
u32 *hdr = (u32 *)(bctBuf + 0x100);
u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3];
DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size);
// Read in Boot Config.
memset(bctBuf, 0, BCT_SIZE);
nx_emmc_part_read(&storage, pkg2_part, 0, BCT_SIZE / NX_EMMC_BLOCKSIZE, bctBuf);
// Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE);
DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned);
ctxt->pkg2 = malloc(pkg2_size_aligned);
ctxt->pkg2_size = pkg2_size;
nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE,
pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2);
out:;
nx_emmc_gpt_free(&gpt);
sdmmc_storage_end(&storage);
return bctBuf;
}
static void _free_launch_components(launch_ctxt_t *ctxt)
{
free(ctxt->keyblob);
free(ctxt->pkg1);
free(ctxt->pkg2);
free(ctxt->warmboot);
free(ctxt->secmon);
free(ctxt->kernel);
free(ctxt->kip1_patches);
}
int hos_launch(ini_sec_t *cfg)
{
launch_ctxt_t ctxt;
tsec_ctxt_t tsec_ctxt;
memset(&ctxt, 0, sizeof(launch_ctxt_t));
list_init(&ctxt.kip1_list);
if (!gfx_con.mute)
gfx_clear_grey(&gfx_ctxt, 0x1B);
gfx_con_setpos(&gfx_con, 0, 0);
// Try to parse config if present.
if (cfg && !_parse_boot_config(&ctxt, cfg))
return 0;
gfx_printf(&gfx_con, "Initializing...\n\n");
// Read package1 and the correct keyblob.
if (!_read_emmc_pkg1(&ctxt))
return 0;
gfx_printf(&gfx_con, "Loaded pkg1 and keyblob\n");
// Generate keys.
if (!h_cfg.se_keygen_done || ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_620)
{
tsec_ctxt.key_ver = 1;
tsec_ctxt.fw = (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off;
tsec_ctxt.pkg1 = ctxt.pkg1;
tsec_ctxt.pkg11_off = ctxt.pkg1_id->pkg11_off;
tsec_ctxt.secmon_base = ctxt.pkg1_id->secmon_base;
if (!keygen(ctxt.keyblob, ctxt.pkg1_id->kb, &tsec_ctxt))
return 0;
DPRINTF("Generated keys\n");
h_cfg.se_keygen_done = 1;
}
// Decrypt and unpack package1 if we require parts of it.
if (!ctxt.warmboot || !ctxt.secmon)
{
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_600)
pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1);
pkg1_unpack((void *)ctxt.pkg1_id->warmboot_base, (void *)ctxt.pkg1_id->secmon_base, NULL, ctxt.pkg1_id, ctxt.pkg1);
gfx_printf(&gfx_con, "Decrypted and unpacked pkg1\n");
}
// Replace 'warmboot.bin' if requested.
if (ctxt.warmboot)
memcpy((void *)ctxt.pkg1_id->warmboot_base, ctxt.warmboot, ctxt.warmboot_size);
else
{
// Else we patch it to allow downgrading.
patch_t *warmboot_patchset = ctxt.pkg1_id->warmboot_patchset;
gfx_printf(&gfx_con, "%kPatching Warmboot%k\n", 0xFFFFBA00, 0xFFCCCCCC);
for (u32 i = 0; warmboot_patchset[i].off != 0xFFFFFFFF; i++)
*(vu32 *)(ctxt.pkg1_id->warmboot_base + warmboot_patchset[i].off) = warmboot_patchset[i].val;
}
// Set warmboot address in PMC if required.
if (ctxt.pkg1_id->set_warmboot)
PMC(APBDEV_PMC_SCRATCH1) = ctxt.pkg1_id->warmboot_base;
// Replace 'SecureMonitor' if requested.
if (ctxt.secmon)
memcpy((void *)ctxt.pkg1_id->secmon_base, ctxt.secmon, ctxt.secmon_size);
else
{
// Else we patch it to allow for an unsigned package2 and patched kernel.
patch_t *secmon_patchset = ctxt.pkg1_id->secmon_patchset;
gfx_printf(&gfx_con, "%kPatching Security Monitor%k\n", 0xFFFFBA00, 0xFFCCCCCC);
for (u32 i = 0; secmon_patchset[i].off != 0xFFFFFFFF; i++)
*(vu32 *)(ctxt.pkg1_id->secmon_base + secmon_patchset[i].off) = secmon_patchset[i].val;
}
gfx_printf(&gfx_con, "Loaded warmboot.bin and secmon\n");
// Read package2.
u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt);
if (!bootConfigBuf)
return 0;
gfx_printf(&gfx_con, "Read pkg2\n");
// Decrypt package2 and parse KIP1 blobs in INI1 section.
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2);
if (!pkg2_hdr)
{
gfx_printf(&gfx_con, "Pkg2 decryption failed!\n");
return 0;
}
LIST_INIT(kip1_info);
pkg2_parse_kips(&kip1_info, pkg2_hdr);
gfx_printf(&gfx_con, "Parsed ini1\n");
// Use the kernel included in package2 in case we didn't load one already.
if (!ctxt.kernel)
{
ctxt.kernel = pkg2_hdr->data;
ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL];
if (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere)
{
u32 kernel_crc32 = crc32c(ctxt.kernel, ctxt.kernel_size);
ctxt.pkg2_kernel_id = pkg2_identify(kernel_crc32);
// In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode.
kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset;
if (kernel_patchset != NULL)
{
gfx_printf(&gfx_con, "%kPatching kernel%k\n", 0xFFFFBA00, 0xFFCCCCCC);
u32 *temp;
for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++)
{
if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS)
|| (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN && !(ctxt.atmosphere && ctxt.secmon))
|| (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH))
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH)
{
temp = (u32 *)kernel_patchset[i].ptr;
for (u32 j = 0; j < kernel_patchset[i].val; j++)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j];
}
}
}
}
}
// Merge extra KIP1s into loaded ones.
gfx_printf(&gfx_con, "%kPatching kernel initial processes%k\n", 0xFFFFBA00, 0xFFCCCCCC);
LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link)
pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1);
// Patch kip1s in memory if needed.
const char* unappliedPatch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches);
if (unappliedPatch != NULL)
{
gfx_printf(&gfx_con, "%kREQUESTED PATCH '%s' NOT APPLIED!%k\n", 0xFFFF0000, unappliedPatch, 0xFFCCCCCC);
sd_unmount(); // Just exiting is not enough until pkg2_patch_kips stops modifying the string passed into it.
while(1) {} // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated!
}
// Rebuild and encrypt package2.
pkg2_build_encrypt((void *)0xA9800000, ctxt.kernel, ctxt.kernel_size, &kip1_info);
gfx_printf(&gfx_con, "Rebuilt and loaded pkg2\n");
// Unmount SD card.
sd_unmount();
gfx_printf(&gfx_con, "\n%kBooting...%k\n", 0xFF96FF00, 0xFFCCCCCC);
// Clear pkg1/pkg2 keys.
se_aes_key_clear(8);
se_aes_key_clear(11);
// Finalize per firmware keys.
int bootStateDramPkg2 = 0;
int bootStatePkg2Continue = 0;
switch (ctxt.pkg1_id->kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_300)
PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0xE3; // Warmboot 3.0.0 PA address id.
else if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_301)
PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0x104; // Warmboot 3.0.1/.2 PA address id.
se_key_acc_ctrl(12, 0xFF);
se_key_acc_ctrl(13, 0xFF);
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 3;
break;
case KB_FIRMWARE_VERSION_400:
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_key_acc_ctrl(12, 0xFF);
se_key_acc_ctrl(15, 0xFF);
case KB_FIRMWARE_VERSION_620:
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 4;
break;
}
// Clear BCT area for retail units and copy it over if dev unit.
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_500)
{
memset((void *)0x4003D000, 0, 0x3000);
if ((fuse_read_odm(4) & 3) == 3)
memcpy((void *)0x4003D000, bootConfigBuf, 0x1000);
}
else
{
memset((void *)0x4003F000, 0, 0x1000);
if ((fuse_read_odm(4) & 3) == 3)
memcpy((void *)0x4003F800, bootConfigBuf, 0x800);
}
free(bootConfigBuf);
// Config Exosphère if booting full Atmosphère.
if (ctxt.atmosphere && ctxt.secmon)
config_exosphere(ctxt.pkg1_id->id, ctxt.pkg1_id->kb, ctxt.debugmode);
// Finalize MC carveout.
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_301)
mc_config_carveout();
// Lock SE before starting 'SecureMonitor' if < 6.2.0, otherwise lock bootrom and ipatches.
_se_lock(ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_600);
// Reset sysctr0 counters.
if (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_620)
_sysctr0_reset();
// Free allocated memory.
ini_free_section(cfg);
_free_launch_components(&ctxt);
// < 4.0.0 pkg1.1 locks PMC scratches.
//_pmc_scratch_lock(ctxt.pkg1_id->kb);
// < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot.
// >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot.
vu32 *mb_in = (vu32 *)0x40002EF8;
// Non-zero: Secmon ready.
vu32 *mb_out = (vu32 *)0x40002EFC;
// Start from DRAM ready signal.
*mb_in = bootStateDramPkg2;
*mb_out = 0;
// Disable display. This must be executed before secmon to provide support for all fw versions.
display_end();
// Wait for secmon to get ready.
if (smmu_is_used())
smmu_exit();
else
cluster_boot_cpu0(ctxt.pkg1_id->secmon_base);
while (!*mb_out)
usleep(1); // This only works when in IRAM or with a trained DRAM.
// Signal pkg2 ready and continue boot.
*mb_in = bootStatePkg2Continue;
// Halt ourselves in waitevent state and resume if there's JTAG activity.
while (1)
FLOW_CTLR(FLOW_CTLR_HALT_COP_EVENTS) = 0x50000000;
return 0;
}