1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-29 21:12:06 +00:00
hekate/bootloader/hos/hos.c
2021-02-06 03:20:43 +02:00

1167 lines
34 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 st4rk
* Copyright (c) 2018 Ced2911
* Copyright (c) 2018-2021 CTCaer
* Copyright (c) 2018 balika011
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hos.h"
#include "hos_config.h"
#include "sept.h"
#include "secmon_exo.h"
#include "../config.h"
#include <display/di.h>
#include <gfx_utils.h>
#include <mem/heap.h>
#include <mem/mc.h>
#include <mem/minerva.h>
#include <mem/smmu.h>
#include <sec/se.h>
#include <sec/se_t210.h>
#include <sec/tsec.h>
#include <soc/bpmp.h>
#include <soc/ccplex.h>
#include <soc/clock.h>
#include <soc/fuse.h>
#include <soc/pmc.h>
#include <soc/t210.h>
#include "../storage/emummc.h"
#include <storage/mbr_gpt.h>
#include "../storage/nx_emmc.h"
#include <storage/nx_sd.h>
#include <storage/sdmmc.h>
#include <utils/btn.h>
#include <utils/util.h>
extern hekate_config h_cfg;
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
#define EHPRINTFARGS(text, args...) \
({ gfx_con.mute = false; \
gfx_printf("%k"text"%k\n", 0xFFFF0000, args, 0xFFCCCCCC); })
#define PKG2_LOAD_ADDR 0xA9800000
#define SECMON_BCT_CFG_ADDR 0x4003D000
#define SECMON6_BCT_CFG_ADDR 0x4003F800
// Secmon mailbox.
#define SECMON_MAILBOX_ADDR 0x40002E00
#define SECMON7_MAILBOX_ADDR 0x40000000
#define SECMON_STATE_OFFSET 0xF8
typedef struct _secmon_mailbox_t
{
// < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot.
// >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot.
u32 in;
// Non-zero: Secmon ready.
u32 out;
} secmon_mailbox_t;
typedef struct _tsec_keys_t
{
u8 tsec[SE_KEY_128_SIZE];
u8 tsec_root[SE_KEY_128_SIZE];
u8 tmp[SE_KEY_128_SIZE];
} tsec_keys_t;
typedef struct _kb_keys_t
{
u8 master_keyseed[SE_KEY_128_SIZE];
u8 random_data[0x70];
u8 package1_key[SE_KEY_128_SIZE];
} kb_keys_t;
typedef struct _kb_t
{
u8 cmac[SE_KEY_128_SIZE];
u8 ctr[SE_AES_IV_SIZE];
kb_keys_t keys;
u8 padding[0x150];
} kb_t;
static const u8 keyblob_keyseeds[][SE_KEY_128_SIZE] = {
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, // 1.0.0.
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, // 3.0.0.
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, // 3.0.1.
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, // 4.0.0.
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, // 5.0.0.
{ 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } // 6.0.0.
};
static const u8 cmac_keyseed[SE_KEY_128_SIZE] =
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
static const u8 master_keyseed_retail[SE_KEY_128_SIZE] =
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
static const u8 master_keyseed_4xx_5xx_610[SE_KEY_128_SIZE] =
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
static const u8 master_keyseed_620[SE_KEY_128_SIZE] =
{ 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A };
static const u8 master_kekseed_t210b01[][SE_KEY_128_SIZE] = {
{ 0x77, 0x60, 0x5A, 0xD2, 0xEE, 0x6E, 0xF8, 0x3C, 0x3F, 0x72, 0xE2, 0x59, 0x9D, 0xAC, 0x5E, 0x56 }, // 6.0.0.
{ 0x1E, 0x80, 0xB8, 0x17, 0x3E, 0xC0, 0x60, 0xAA, 0x11, 0xBE, 0x1A, 0x4A, 0xA6, 0x6F, 0xE4, 0xAE }, // 6.2.0.
{ 0x94, 0x08, 0x67, 0xBD, 0x0A, 0x00, 0x38, 0x84, 0x11, 0xD3, 0x1A, 0xDB, 0xDD, 0x8D, 0xF1, 0x8A }, // 7.0.0.
{ 0x5C, 0x24, 0xE3, 0xB8, 0xB4, 0xF7, 0x00, 0xC2, 0x3C, 0xFD, 0x0A, 0xCE, 0x13, 0xC3, 0xDC, 0x23 }, // 8.1.0.
{ 0x86, 0x69, 0xF0, 0x09, 0x87, 0xC8, 0x05, 0xAE, 0xB5, 0x7B, 0x48, 0x74, 0xDE, 0x62, 0xA6, 0x13 }, // 9.0.0.
{ 0x0E, 0x44, 0x0C, 0xED, 0xB4, 0x36, 0xC0, 0x3F, 0xAA, 0x1D, 0xAE, 0xBF, 0x62, 0xB1, 0x09, 0x82 }, // 9.1.0.
};
static const u8 console_keyseed[SE_KEY_128_SIZE] =
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
static const u8 console_keyseed_4xx_5xx[SE_KEY_128_SIZE] =
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
const u8 package2_keyseed[SE_KEY_128_SIZE] =
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
static void _hos_crit_error(const char *text)
{
gfx_con.mute = false;
gfx_printf("%k%s%k\n", 0xFFFF0000, text, 0xFFCCCCCC);
}
static void _se_lock(bool lock_se)
{
if (lock_se)
{
// Disable aes key read.
for (u32 i = 0; i < 16; i++)
se_key_acc_ctrl(i, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
// Disable RSA key read.
for (u32 i = 0; i < 2; i++)
se_rsa_acc_ctrl(i, SE_RSA_KEY_TBL_DIS_KEYREAD_FLAG);
SE(SE_TZRAM_SECURITY_REG) = 0; // Make SE TZRAM secure only.
SE(SE_CRYPTO_SECURITY_PERKEY_REG) = 0; // Make all AES keys access secure only.
SE(SE_RSA_SECURITY_PERKEY_REG) = 0; // Make all RSA keys access secure only.
SE(SE_SE_SECURITY_REG) &= ~SE_PERKEY_SETTING; // Make access lock regs secure only.
}
memset((void *)IPATCH_BASE, 0, 14 * sizeof(u32));
SB(SB_CSR) = SB_CSR_PIROM_DISABLE;
// This is useful for documenting the bits in the SE config registers, so we can keep it around.
/*gfx_printf("SE(SE_SE_SECURITY_REG) = %08X\n", SE(SE_SE_SECURITY_REG));
gfx_printf("SE(0x4) = %08X\n", SE(0x4));
gfx_printf("SE(SE_CRYPTO_SECURITY_PERKEY_REG) = %08X\n", SE(SE_CRYPTO_SECURITY_PERKEY_REG));
gfx_printf("SE(SE_RSA_SECURITY_PERKEY_REG) = %08X\n", SE(SE_RSA_SECURITY_PERKEY_REG));
for(u32 i = 0; i < 16; i++)
gfx_printf("%02X ", SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + i * 4) & 0xFF);
gfx_putc('\n');
for(u32 i = 0; i < 2; i++)
gfx_printf("%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG + i * 4) & 0xFF);
gfx_putc('\n');
gfx_hexdump(SE_BASE, (void *)SE_BASE, 0x400);*/
}
void _sysctr0_reset()
{
SYSCTR0(SYSCTR0_CNTCR) = 0;
SYSCTR0(SYSCTR0_COUNTERID0) = 0;
SYSCTR0(SYSCTR0_COUNTERID1) = 0;
SYSCTR0(SYSCTR0_COUNTERID2) = 0;
SYSCTR0(SYSCTR0_COUNTERID3) = 0;
SYSCTR0(SYSCTR0_COUNTERID4) = 0;
SYSCTR0(SYSCTR0_COUNTERID5) = 0;
SYSCTR0(SYSCTR0_COUNTERID6) = 0;
SYSCTR0(SYSCTR0_COUNTERID7) = 0;
SYSCTR0(SYSCTR0_COUNTERID8) = 0;
SYSCTR0(SYSCTR0_COUNTERID9) = 0;
SYSCTR0(SYSCTR0_COUNTERID10) = 0;
SYSCTR0(SYSCTR0_COUNTERID11) = 0;
}
bool hos_eks_rw_try(u8 *buf, bool write)
{
for (u32 i = 0; i < 3; i++)
{
if (!write)
{
if (sdmmc_storage_read(&sd_storage, 0, 1, buf))
return true;
}
else
{
if (sdmmc_storage_write(&sd_storage, 0, 1, buf))
return true;
}
}
return false;
}
void hos_eks_get()
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
// Check if EKS already found and parsed.
if (!h_cfg.eks)
{
// Read EKS blob.
u8 *mbr = calloc(512 , 1);
if (!hos_eks_rw_try(mbr, false))
goto out;
// Decrypt EKS blob.
hos_eks_mbr_t *eks = (hos_eks_mbr_t *)(mbr + 0x80);
se_aes_crypt_ecb(14, 0, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Check if valid and for this unit.
if (eks->magic == HOS_EKS_MAGIC &&
(eks->lot0 == FUSE(FUSE_OPT_LOT_CODE_0) || eks->lot0 == FUSE(FUSE_PRIVATE_KEY0)))
{
h_cfg.eks = eks;
return;
}
out:
free(mbr);
}
}
void hos_eks_save(u32 kb)
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
if (kb >= KB_FIRMWARE_VERSION_700)
{
u32 key_idx = 0;
if (kb >= KB_FIRMWARE_VERSION_810)
key_idx = 1;
bool new_eks = false;
if (!h_cfg.eks)
{
h_cfg.eks = calloc(512 , 1);
new_eks = true;
}
// If matching blob doesn't exist, create it.
bool update_eks = key_idx ? (h_cfg.eks->enabled[key_idx] < kb) : !h_cfg.eks->enabled[0];
// If old EKS version was found, update it.
update_eks |= h_cfg.eks->lot0 != FUSE(FUSE_OPT_LOT_CODE_0);
if (update_eks)
{
// Read EKS blob.
u8 *mbr = calloc(512 , 1);
if (!hos_eks_rw_try(mbr, false))
{
if (new_eks)
{
free(h_cfg.eks);
h_cfg.eks = NULL;
}
goto out;
}
// Get keys.
u8 *keys = (u8 *)calloc(0x2000, 1);
se_get_aes_keys(keys + 0x1000, keys, SE_KEY_128_SIZE);
// Set magic and personalized info.
h_cfg.eks->magic = HOS_EKS_MAGIC;
h_cfg.eks->enabled[key_idx] = kb;
h_cfg.eks->lot0 = FUSE(FUSE_OPT_LOT_CODE_0);
// Copy new keys.
memcpy(h_cfg.eks->dkg, keys + 10 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(h_cfg.eks->dkk, keys + 15 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
if (!h_cfg.aes_slots_new)
{
memcpy(h_cfg.eks->keys[key_idx].mkk, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(h_cfg.eks->keys[key_idx].fdk, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
}
else // New sept slots.
{
memcpy(h_cfg.eks->keys[key_idx].mkk, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(h_cfg.eks->keys[key_idx].fdk, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
}
// Encrypt EKS blob.
u8 *eks = calloc(512 , 1);
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Write EKS blob to SD.
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
hos_eks_rw_try(mbr, true);
free(eks);
free(keys);
out:
free(mbr);
}
}
}
void hos_eks_clear(u32 kb)
{
// Check if Erista based unit.
if (h_cfg.t210b01)
return;
if (h_cfg.eks && kb >= KB_FIRMWARE_VERSION_700)
{
u32 key_idx = 0;
if (kb >= KB_FIRMWARE_VERSION_810)
key_idx = 1;
// Check if Current Master key is enabled.
if (h_cfg.eks->enabled[key_idx])
{
// Read EKS blob.
u8 *mbr = calloc(512 , 1);
if (!hos_eks_rw_try(mbr, false))
goto out;
// Disable current Master key version.
h_cfg.eks->enabled[key_idx] = 0;
// Encrypt EKS blob.
u8 *eks = calloc(512 , 1);
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
// Write EKS blob to SD.
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
hos_eks_rw_try(mbr, true);
EMC(EMC_SCRATCH0) &= ~EMC_SEPT_RUN;
h_cfg.sept_run = false;
free(eks);
out:
free(mbr);
}
}
}
int hos_keygen_t210b01(u32 kb)
{
// Use SBK as Device key 4x unsealer and KEK for mkey in T210B01 units.
se_aes_unwrap_key(10, 14, console_keyseed_4xx_5xx);
// Derive master key.
se_aes_unwrap_key(7, 12, &master_kekseed_t210b01[kb - KB_FIRMWARE_VERSION_600]);
se_aes_unwrap_key(7, 7, master_keyseed_retail);
// Derive latest pkg2 key.
se_aes_unwrap_key(8, 7, package2_keyseed);
return 1;
}
int hos_keygen(void *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt, launch_ctxt_t *hos_ctxt)
{
u32 retries = 0;
tsec_keys_t tsec_keys;
kb_t *kb_data = (kb_t *)keyblob;
if (kb > KB_FIRMWARE_VERSION_MAX)
return 0;
if (h_cfg.t210b01)
return hos_keygen_t210b01(kb);
if (kb <= KB_FIRMWARE_VERSION_600)
tsec_ctxt->size = 0xF00;
else if (kb == KB_FIRMWARE_VERSION_620)
tsec_ctxt->size = 0x2900;
else if (kb == KB_FIRMWARE_VERSION_700)
tsec_ctxt->size = 0x3000;
else
tsec_ctxt->size = 0x3300;
// Prepare smmu tsec page for 6.2.0.
if (kb == KB_FIRMWARE_VERSION_620)
{
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size);
tsec_ctxt->fw = tsec_paged;
}
// Get TSEC key.
if (kb <= KB_FIRMWARE_VERSION_620)
{
while (tsec_query(&tsec_keys, kb, tsec_ctxt) < 0)
{
memset(&tsec_keys, 0x00, 0x20);
retries++;
// We rely on racing conditions, make sure we cover even the unluckiest cases.
if (retries > 15)
{
_hos_crit_error("\nFailed to get TSEC keys. Please try again.");
return 0;
}
}
}
if (kb >= KB_FIRMWARE_VERSION_700)
{
// Use HOS EKS if it exists.
u32 key_idx = 0;
if (kb >= KB_FIRMWARE_VERSION_810)
key_idx = 1;
if (h_cfg.eks && h_cfg.eks->enabled[key_idx] >= kb)
{
// Set Device keygen key to slot 10.
se_aes_key_set(10, h_cfg.eks->dkg, SE_KEY_128_SIZE);
// Set Device key to slot 15.
se_aes_key_set(15, h_cfg.eks->dkk, SE_KEY_128_SIZE);
if (!h_cfg.aes_slots_new)
{
// Set Master key to slot 12.
se_aes_key_set(12, h_cfg.eks->keys[key_idx].mkk, SE_KEY_128_SIZE);
// Set FW Device key key to slot 13.
se_aes_key_set(13, h_cfg.eks->keys[key_idx].fdk, SE_KEY_128_SIZE);
// Lock FDK.
se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
}
else // New exosphere.
{
// Set Master key to slot 13.
se_aes_key_set(13, h_cfg.eks->keys[key_idx].mkk, SE_KEY_128_SIZE);
// Set FW Device key key to slot 12.
se_aes_key_set(12, h_cfg.eks->keys[key_idx].fdk, SE_KEY_128_SIZE);
// Lock FDK.
se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
}
}
se_aes_key_clear(8);
se_aes_unwrap_key(8, !h_cfg.aes_slots_new ? 12 : 13, package2_keyseed);
}
else if (kb == KB_FIRMWARE_VERSION_620)
{
// Set TSEC key.
se_aes_key_set(12, tsec_keys.tsec, SE_KEY_128_SIZE);
// Set TSEC root key.
se_aes_key_set(13, tsec_keys.tsec_root, SE_KEY_128_SIZE);
if (!(emu_cfg.enabled && !h_cfg.emummc_force_disable) && hos_ctxt->stock)
{
// Package2 key.
se_aes_key_set(8, tsec_keys.tsec_root, SE_KEY_128_SIZE);
se_aes_unwrap_key(8, 8, master_keyseed_620);
se_aes_unwrap_key(8, 8, master_keyseed_retail);
se_aes_unwrap_key(8, 8, package2_keyseed);
}
else
{
// Decrypt keyblob and set keyslots
se_aes_crypt_block_ecb(12, 0, tsec_keys.tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tsec_keys.tmp);
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(13, 13, master_keyseed_620);
if (!h_cfg.aes_slots_new)
{
se_aes_unwrap_key(14, 13, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 13, master_keyseed_retail);
}
else // New exosphere.
{
se_aes_unwrap_key(12, 13, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(13, 13, master_keyseed_retail);
}
// Package2 key.
se_aes_unwrap_key(8, !h_cfg.aes_slots_new ? 12 : 13, package2_keyseed);
h_cfg.se_keygen_done = 1;
}
}
else
{
se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
se_key_acc_ctrl(14, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
// Set TSEC key.
se_aes_key_set(13, tsec_keys.tsec, SE_KEY_128_SIZE);
// Derive keyblob keys from TSEC+SBK.
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tsec_keys.tsec);
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, keyblob_keyseeds[kb]);
se_aes_unwrap_key(13, 14, tsec_keys.tsec);
// Clear SBK.
se_aes_key_clear(14);
/*
// Verify keyblob CMAC.
u8 cmac[SE_KEY_128_SIZE];
se_aes_unwrap_key(11, 13, cmac_keyseed);
se_aes_cmac(cmac, SE_KEY_128_SIZE, 11, (void *)kb_data->ctr, sizeof(kb_data->ctr) + sizeof(kb_data->keys));
if (!memcmp(kb_data->cmac, cmac, SE_KEY_128_SIZE))
return 0;
*/
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, cmac_keyseed);
se_aes_unwrap_key(11, 13, cmac_keyseed);
// Decrypt keyblob and set keyslots.
se_aes_crypt_ctr(13, &kb_data->keys, sizeof(kb_data->keys), &kb_data->keys, sizeof(kb_data->keys), kb_data->ctr);
se_aes_key_set(11, kb_data->keys.package1_key, SE_KEY_128_SIZE);
se_aes_key_set(12, kb_data->keys.master_keyseed, SE_KEY_128_SIZE);
se_aes_key_set(13, kb_data->keys.master_keyseed, SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(12, 0, tsec_keys.tsec, master_keyseed_retail);
if (!h_cfg.aes_slots_new)
{
switch (kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
se_aes_unwrap_key(13, 15, console_keyseed);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_400:
se_aes_unwrap_key(13, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
}
}
else // New exosphere.
{
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(13, 12, master_keyseed_retail);
se_aes_unwrap_key(12, 12, master_keyseed_4xx_5xx_610);
}
// Package2 key.
se_key_acc_ctrl(8, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG);
se_aes_unwrap_key(8, !h_cfg.aes_slots_new ? 12 : 13, package2_keyseed);
}
return 1;
}
static int _read_emmc_pkg1(launch_ctxt_t *ctxt)
{
static const u32 BOOTLOADER_SIZE = 0x40000;
static const u32 BOOTLOADER_MAIN_OFFSET = 0x100000;
static const u32 BOOTLOADER_BACKUP_OFFSET = 0x140000;
static const u32 HOS_KEYBLOBS_OFFSET = 0x180000;
u32 pk1_offset = h_cfg.t210b01 ? sizeof(bl_hdr_t210b01_t) : 0; // Skip T210B01 OEM header.
u32 bootloader_offset = BOOTLOADER_MAIN_OFFSET;
ctxt->pkg1 = (void *)malloc(BOOTLOADER_SIZE);
try_load:
// Read package1.
emummc_storage_set_mmc_partition(EMMC_BOOT0);
emummc_storage_read(bootloader_offset / NX_EMMC_BLOCKSIZE, BOOTLOADER_SIZE / NX_EMMC_BLOCKSIZE, ctxt->pkg1);
ctxt->pkg1_id = pkg1_identify(ctxt->pkg1 + pk1_offset);
if (!ctxt->pkg1_id)
{
_hos_crit_error("Unknown pkg1 version.");
EPRINTFARGS("HOS version not supported!%s",
(emu_cfg.enabled && !h_cfg.emummc_force_disable) ? "\nOr emuMMC corrupt!" : "");
// Try backup bootloader.
if (bootloader_offset != BOOTLOADER_BACKUP_OFFSET)
{
EPRINTF("Trying backup bootloader...");
bootloader_offset = BOOTLOADER_BACKUP_OFFSET;
goto try_load;
}
return 0;
}
gfx_printf("Identified pkg1 and mkey %d\n\n", ctxt->pkg1_id->kb);
// Read the correct keyblob.
ctxt->keyblob = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
emummc_storage_read(HOS_KEYBLOBS_OFFSET / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob);
return 1;
}
static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt)
{
u8 *bctBuf = NULL;
emummc_storage_set_mmc_partition(EMMC_GPP);
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &emmc_storage);
DPRINTF("Parsed GPT\n");
// Find package2 partition.
emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part)
goto out;
// Read in package2 header and get package2 real size.
static const u32 BCT_SIZE = 0x4000;
bctBuf = (u8 *)malloc(BCT_SIZE);
nx_emmc_part_read(&emmc_storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE, 1, bctBuf);
u32 *hdr = (u32 *)(bctBuf + 0x100);
u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3];
DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size);
// Read in Boot Config.
memset(bctBuf, 0, BCT_SIZE);
nx_emmc_part_read(&emmc_storage, pkg2_part, 0, BCT_SIZE / NX_EMMC_BLOCKSIZE, bctBuf);
// Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE);
DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned);
ctxt->pkg2 = malloc(pkg2_size_aligned);
ctxt->pkg2_size = pkg2_size;
nx_emmc_part_read(&emmc_storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE,
pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2);
out:
nx_emmc_gpt_free(&gpt);
return bctBuf;
}
static void _free_launch_components(launch_ctxt_t *ctxt)
{
free(ctxt->keyblob);
free(ctxt->pkg1);
free(ctxt->pkg2);
free(ctxt->warmboot);
free(ctxt->secmon);
free(ctxt->kernel);
free(ctxt->kip1_patches);
}
static bool _get_fs_exfat_compatible(link_t *info, bool *fs_is_510)
{
u32 fs_ids_cnt;
u32 sha_buf[32 / sizeof(u32)];
kip1_id_t *kip_ids;
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
if (strncmp((const char*)ki->kip1->name, "FS", 2))
continue;
if (!se_calc_sha256_oneshot(sha_buf, ki->kip1, ki->size))
break;
pkg2_get_ids(&kip_ids, &fs_ids_cnt);
for (u32 fs_idx = 0; fs_idx < fs_ids_cnt; fs_idx++)
{
if (!memcmp(sha_buf, kip_ids[fs_idx].hash, 8))
{
// Check if it's 5.1.0.
if ((fs_idx & ~1) == 16)
*fs_is_510 = true;
// Check if FAT32-only.
if (!(fs_idx & 1))
return false;
// FS is FAT32 + exFAT.
break;
}
}
break;
}
// Hash didn't match or FAT32 + exFAT.
return true;
}
int hos_launch(ini_sec_t *cfg)
{
u8 kb;
u32 secmon_base;
u32 warmboot_base;
launch_ctxt_t ctxt;
bool exo_new = false;
tsec_ctxt_t tsec_ctxt;
volatile secmon_mailbox_t *secmon_mailbox;
minerva_change_freq(FREQ_1600);
memset(&ctxt, 0, sizeof(launch_ctxt_t));
memset(&tsec_ctxt, 0, sizeof(tsec_ctxt_t));
list_init(&ctxt.kip1_list);
ctxt.cfg = cfg;
if (!gfx_con.mute)
gfx_clear_grey(0x1B);
gfx_con_setpos(0, 0);
gfx_puts("Initializing...\n\n");
// Initialize eMMC/emuMMC.
int res = emummc_storage_init_mmc();
if (res)
{
if (res == 2)
_hos_crit_error("Failed to init eMMC.");
else
_hos_crit_error("Failed to init emuMMC.");
goto error;
}
// Check if SD Card is GPT.
if (sd_is_gpt())
_hos_crit_error("SD has GPT only!");
// Read package1 and the correct keyblob.
if (!_read_emmc_pkg1(&ctxt))
goto error;
kb = ctxt.pkg1_id->kb;
// Try to parse config if present.
if (ctxt.cfg && !parse_boot_config(&ctxt))
{
_hos_crit_error("Wrong ini cfg or missing files!");
goto error;
}
bool emummc_enabled = emu_cfg.enabled && !h_cfg.emummc_force_disable;
// Enable emummc patching.
if (emummc_enabled)
{
if (ctxt.stock)
{
_hos_crit_error("Stock emuMMC is not supported yet!");
goto error;
}
ctxt.atmosphere = true; // Set atmosphere patching in case of Stock emuMMC and no fss0.
config_kip1patch(&ctxt, "emummc");
}
else if (!emu_cfg.enabled && ctxt.emummc_forced)
{
_hos_crit_error("emuMMC is forced but not enabled!");
goto error;
}
// Check if fuses lower than 4.0.0 or 9.0.0 or 11.0.0 and if yes apply NO Gamecard patch.
// Additionally check if running emuMMC and disable GC if v3/v4 fuses are burnt and HOS is <= 8.1.0 or != 11.0.0.
if (!ctxt.stock)
{
u32 fuses = fuse_read_odm(7);
if ((h_cfg.autonogc &&
(
(!(fuses & ~0xF) && (ctxt.pkg1_id->fuses >= 5)) || // LAFW v2, 4.0.0+
(!(fuses & ~0x3FF) && (ctxt.pkg1_id->fuses >= 11)) || // LAFW v3, 9.0.0+
(!(fuses & ~0x1FFF) && (ctxt.pkg1_id->fuses >= 14)) // LAFW v4, 11.0.0+
)
)
|| ((emummc_enabled) &&
(
((fuses & 0x400) && (ctxt.pkg1_id->fuses <= 10)) || // HOS 9.0.0+ fuses burnt.
((fuses & 0x2000) && (ctxt.pkg1_id->fuses <= 13)) // HOS 11.0.0+ fuses burnt.
)
))
config_kip1patch(&ctxt, "nogc");
}
gfx_puts("Loaded config, pkg1 and keyblob\n");
// Check if secmon is new exosphere.
if (ctxt.secmon)
exo_new = !memcmp((void *)((u8 *)ctxt.secmon + ctxt.secmon_size - 4), "LENY", 4);
const pkg1_id_t *pk1_latest = pkg1_get_latest();
secmon_base = exo_new ? pk1_latest->secmon_base : ctxt.pkg1_id->secmon_base;
warmboot_base = exo_new ? pk1_latest->warmboot_base : ctxt.pkg1_id->warmboot_base;
h_cfg.aes_slots_new = exo_new;
// Generate keys.
if (!h_cfg.se_keygen_done)
{
tsec_ctxt.fw = (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off;
tsec_ctxt.pkg1 = ctxt.pkg1;
tsec_ctxt.pkg11_off = ctxt.pkg1_id->pkg11_off;
tsec_ctxt.secmon_base = secmon_base;
if (kb >= KB_FIRMWARE_VERSION_700 && !h_cfg.sept_run)
{
_hos_crit_error("Failed to run sept");
goto error;
}
if (!hos_keygen(ctxt.keyblob, kb, &tsec_ctxt, &ctxt))
goto error;
gfx_puts("Generated keys\n");
if (kb <= KB_FIRMWARE_VERSION_600)
h_cfg.se_keygen_done = 1;
}
// Decrypt and unpack package1 if we require parts of it.
if (!ctxt.warmboot || !ctxt.secmon)
{
// Decrypt PK1 or PK11.
if (kb <= KB_FIRMWARE_VERSION_600 || h_cfg.t210b01)
{
if (!pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1))
{
_hos_crit_error("Pkg1 decryption failed!");
if (h_cfg.t210b01)
EPRINTF("Is BEK missing?");
goto error;
}
}
// Unpack PK11.
if (h_cfg.t210b01 || (kb <= KB_FIRMWARE_VERSION_620 && !emummc_enabled))
{
// Skip T210B01 OEM header.
u32 pk1_offset = 0;
if (h_cfg.t210b01)
pk1_offset = sizeof(bl_hdr_t210b01_t);
pkg1_unpack((void *)warmboot_base, &ctxt.warmboot_size,
!exo_new ? (void *)ctxt.pkg1_id->secmon_base : NULL, NULL,
ctxt.pkg1_id, ctxt.pkg1 + pk1_offset);
gfx_puts("Decrypted & unpacked pkg1\n");
}
else
{
_hos_crit_error("No mandatory secmon or warmboot provided!");
goto error;
}
}
// Configure and manage Warmboot binary.
if (!pkg1_warmboot_config(&ctxt, warmboot_base))
{
// Can only happen on T210B01.
_hos_crit_error("Failed to match warmboot with fuses!\nIf you continue, sleep wont work!");
gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n");
display_backlight_brightness(h_cfg.backlight, 1000);
if (!(btn_wait() & BTN_POWER))
goto error;
}
// Replace 'warmboot.bin' if requested.
if (ctxt.warmboot)
memcpy((void *)warmboot_base, ctxt.warmboot, ctxt.warmboot_size);
else if (!h_cfg.t210b01)
{
// Patch warmboot on T210 to allow downgrading.
if (kb >= KB_FIRMWARE_VERSION_700)
{
_hos_crit_error("No warmboot provided!");
goto error;
}
pkg1_warmboot_patch((void *)&ctxt);
}
// Replace 'SecureMonitor' if requested or patch Pkg2 checks if needed.
if (ctxt.secmon)
memcpy((void *)secmon_base, ctxt.secmon, ctxt.secmon_size);
else
pkg1_secmon_patch((void *)&ctxt, secmon_base, h_cfg.t210b01);
gfx_puts("Loaded warmboot and secmon\n");
// Read package2.
u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt);
if (!bootConfigBuf)
{
_hos_crit_error("Pkg2 read failed!");
goto error;
}
gfx_puts("Read pkg2\n");
// Decrypt package2 and parse KIP1 blobs in INI1 section.
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2, kb);
if (!pkg2_hdr)
{
_hos_crit_error("Pkg2 decryption failed!");
EPRINTFARGS("Is hekate%s updated?", kb >= KB_FIRMWARE_VERSION_700 ? " or Sept" : "");
// Clear EKS slot, in case something went wrong with sept keygen.
if (kb >= KB_FIRMWARE_VERSION_700)
hos_eks_clear(kb);
goto error;
}
else if (kb >= KB_FIRMWARE_VERSION_700)
hos_eks_save(kb); // Save EKS slot if it doesn't exist.
LIST_INIT(kip1_info);
if (!pkg2_parse_kips(&kip1_info, pkg2_hdr, &ctxt.new_pkg2))
{
_hos_crit_error("INI1 parsing failed!");
goto error;
}
gfx_puts("Parsed ini1\n");
// Use the kernel included in package2 in case we didn't load one already.
if (!ctxt.kernel)
{
ctxt.kernel = pkg2_hdr->data;
ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL];
if (!ctxt.stock && (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere))
{
// Hash only Kernel when it embeds INI1.
u8 kernel_hash[0x20];
if (!ctxt.new_pkg2)
se_calc_sha256_oneshot(kernel_hash, ctxt.kernel, ctxt.kernel_size);
else
se_calc_sha256_oneshot(kernel_hash, ctxt.kernel + PKG2_NEWKERN_START,
pkg2_newkern_ini1_start - PKG2_NEWKERN_START);
ctxt.pkg2_kernel_id = pkg2_identify(kernel_hash);
if (!ctxt.pkg2_kernel_id)
{
_hos_crit_error("Failed to identify kernel!");
goto error;
}
// In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode.
kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset;
if (kernel_patchset != NULL)
{
gfx_printf("%kPatching kernel%k\n", 0xFFFFBA00, 0xFFCCCCCC);
u32 *temp;
for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++)
{
if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS)
|| (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN && !(ctxt.atmosphere && ctxt.secmon))
|| (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH))
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH)
{
temp = (u32 *)kernel_patchset[i].ptr;
for (u32 j = 0; j < kernel_patchset[i].val; j++)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j];
}
else if (kernel_patchset[i].id < SVC_VERIFY_DS)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
}
}
}
}
// Merge extra KIP1s into loaded ones.
LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link)
pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1);
// Check if FS is compatible with exFAT and if 5.1.0.
if (!ctxt.stock && (sd_fs.fs_type == FS_EXFAT || kb == KB_FIRMWARE_VERSION_500))
{
bool exfat_compat = _get_fs_exfat_compatible(&kip1_info, &ctxt.exo_ctx.fs_is_510);
if (sd_fs.fs_type == FS_EXFAT && !exfat_compat)
{
_hos_crit_error("SD Card is exFAT and installed HOS driver\nonly supports FAT32!");
_free_launch_components(&ctxt);
goto error;
}
}
// Patch kip1s in memory if needed.
if (ctxt.kip1_patches)
gfx_printf("%kPatching kips%k\n", 0xFFFFBA00, 0xFFCCCCCC);
const char* unappliedPatch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches);
if (unappliedPatch != NULL)
{
EHPRINTFARGS("Failed to apply '%s'!", unappliedPatch);
bool emmc_patch_failed = !strcmp(unappliedPatch, "emummc");
if (!emmc_patch_failed)
{
gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n");
display_backlight_brightness(h_cfg.backlight, 1000);
}
if (emmc_patch_failed || !(btn_wait() & BTN_POWER))
{
_free_launch_components(&ctxt);
goto error; // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated!
}
}
// Rebuild and encrypt package2.
pkg2_build_encrypt((void *)PKG2_LOAD_ADDR, &ctxt, &kip1_info);
gfx_puts("Rebuilt & loaded pkg2\n");
gfx_printf("\n%kBooting...%k\n", 0xFF96FF00, 0xFFCCCCCC);
// Set initial mailbox values.
int bootStateDramPkg2 = 0;
int bootStatePkg2Continue = 0;
// Clear pkg1/pkg2 keys.
se_aes_key_clear(8);
se_aes_key_clear(11);
// Finalize per firmware key access. Skip access control if new exosphere.
switch (kb | (exo_new << 7))
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 3;
break;
case KB_FIRMWARE_VERSION_400:
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
se_key_acc_ctrl(15, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG);
default:
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 4;
break;
}
// Clear BCT area for retail units and copy it over if dev unit.
if (kb <= KB_FIRMWARE_VERSION_500 && !exo_new)
{
memset((void *)SECMON_BCT_CFG_ADDR, 0, 0x3000);
if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV)
memcpy((void *)SECMON_BCT_CFG_ADDR, bootConfigBuf, 0x1000);
}
else
{
memset((void *)SECMON6_BCT_CFG_ADDR, 0, 0x800);
if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV)
memcpy((void *)SECMON6_BCT_CFG_ADDR, bootConfigBuf, 0x800);
}
free(bootConfigBuf);
// Config Exosphère if booting full Atmosphère.
if (ctxt.atmosphere && ctxt.secmon)
config_exosphere(&ctxt, warmboot_base, exo_new);
// Unmount SD card and eMMC.
sd_end();
sdmmc_storage_end(&emmc_storage);
// Finalize MC carveout.
if (kb <= KB_FIRMWARE_VERSION_301 && !exo_new)
mc_config_carveout();
// Lock SE before starting 'SecureMonitor' if < 6.2.0, otherwise lock bootrom and ipatches.
_se_lock(kb <= KB_FIRMWARE_VERSION_600 && !exo_new);
// Reset sysctr0 counters.
if (kb >= KB_FIRMWARE_VERSION_620)
_sysctr0_reset();
// NX Bootloader locks LP0 Carveout secure scratch registers.
//pmc_scratch_lock(PMC_SEC_LOCK_LP0_PARAMS);
// Set secmon mailbox address and clear it.
if (kb >= KB_FIRMWARE_VERSION_700 || exo_new)
{
memset((void *)SECMON7_MAILBOX_ADDR, 0, 0x200);
secmon_mailbox = (secmon_mailbox_t *)(SECMON7_MAILBOX_ADDR + SECMON_STATE_OFFSET);
}
else
{
if (kb <= KB_FIRMWARE_VERSION_301)
memset((void *)SECMON_MAILBOX_ADDR, 0, 0x200);
secmon_mailbox = (secmon_mailbox_t *)(SECMON_MAILBOX_ADDR + SECMON_STATE_OFFSET);
}
// Start from DRAM ready signal and reset outgoing value.
secmon_mailbox->in = bootStateDramPkg2;
secmon_mailbox->out = 0;
// Disable display. This must be executed before secmon to provide support for all fw versions.
display_end();
// Clear EMC_SCRATCH0.
EMC(EMC_SCRATCH0) = 0;
// Hold USBD, USB2, AHBDMA and APBDMA in reset for SoC state validation on sleep.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_USBD);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_AHBDMA) | BIT(CLK_H_APBDMA) | BIT(CLK_H_USB2);
// Flush cache and disable MMU.
bpmp_mmu_disable();
bpmp_clk_rate_set(BPMP_CLK_NORMAL);
// emuMMC: Some cards (Sandisk U1), do not like a fast power cycle. Wait min 100ms.
sdmmc_storage_init_wait_sd();
// Launch secmon.
if (smmu_is_used())
smmu_exit();
else
ccplex_boot_cpu0(secmon_base);
// Wait for secmon to get ready.
while (!secmon_mailbox->out)
;
// Signal pkg2 ready and continue boot.
secmon_mailbox->in = bootStatePkg2Continue;
// Halt ourselves in waitevent state and resume if there's JTAG activity.
while (true)
bpmp_halt();
error:
sdmmc_storage_end(&emmc_storage);
h_cfg.aes_slots_new = false;
return 0;
}