/* * nca.c * * Copyright (c) 2020-2022, DarkMatterCore . * * This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool). * * nxdumptool is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * nxdumptool is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "nxdt_utils.h" #include "nca.h" #include "keys.h" #include "aes.h" #include "rsa.h" #include "gamecard.h" #include "title.h" #define NCA_CRYPTO_BUFFER_SIZE 0x800000 /* 8 MiB. */ /* Global variables. */ static u8 *g_ncaCryptoBuffer = NULL; static Mutex g_ncaCryptoBufferMutex = 0; /// Used to verify if the key area from a NCA0 is encrypted. static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = { 0x9A, 0xBB, 0xD2, 0x11, 0x86, 0x00, 0x21, 0x9D, 0x7A, 0xDC, 0x5B, 0x43, 0x95, 0xF8, 0x4E, 0xFD, 0xFF, 0x6B, 0x25, 0xEF, 0x9F, 0x96, 0x85, 0x28, 0x18, 0x9E, 0x76, 0xB0, 0x92, 0xF0, 0x6A, 0xCB }; /// Used to verify the NCA header main signature. static const u8 g_ncaHeaderMainSignaturePublicExponent[3] = { 0x01, 0x00, 0x01 }; /* Function prototypes. */ NX_INLINE bool ncaIsFsInfoEntryValid(NcaFsInfo *fs_info); static bool ncaReadDecryptedHeader(NcaContext *ctx); static bool ncaDecryptKeyArea(NcaContext *ctx); static bool ncaEncryptKeyArea(NcaContext *ctx); static bool ncaVerifyMainSignature(NcaContext *ctx); NX_INLINE bool ncaIsVersion0KeyAreaEncrypted(NcaContext *ctx); NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx); NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx); static bool ncaInitializeFsSectionContext(NcaContext *nca_ctx, u32 section_idx); static bool ncaFsSectionValidateHashDataBoundaries(NcaFsSectionContext *ctx); static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset); static bool ncaFsSectionCheckHashRegionAccess(NcaFsSectionContext *ctx, u64 offset, u64 size, u64 *out_chunk_size); static bool _ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val, bool decrypt); static void ncaCalculateLayerHash(void *dst, const void *src, size_t size, bool use_sha3); static bool ncaGenerateHashDataPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, void *out, bool is_integrity_patch); static bool ncaWritePatchToMemoryBuffer(NcaContext *ctx, const void *patch, u64 patch_size, u64 patch_offset, void *buf, u64 buf_size, u64 buf_offset); static void *ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset); bool ncaAllocateCryptoBuffer(void) { bool ret = false; SCOPED_LOCK(&g_ncaCryptoBufferMutex) { if (!g_ncaCryptoBuffer) g_ncaCryptoBuffer = malloc(NCA_CRYPTO_BUFFER_SIZE); ret = (g_ncaCryptoBuffer != NULL); } return ret; } void ncaFreeCryptoBuffer(void) { SCOPED_LOCK(&g_ncaCryptoBufferMutex) { if (!g_ncaCryptoBuffer) break; free(g_ncaCryptoBuffer); g_ncaCryptoBuffer = NULL; } } bool ncaInitializeContext(NcaContext *out, u8 storage_id, u8 hfs_partition_type, const NcmContentInfo *content_info, u32 title_version, Ticket *tik) { NcmContentStorage *ncm_storage = NULL; u8 valid_fs_section_cnt = 0; if (!out || (storage_id != NcmStorageId_GameCard && !(ncm_storage = titleGetNcmStorageByStorageId(storage_id))) || \ (storage_id == NcmStorageId_GameCard && (!hfs_partition_type || hfs_partition_type >= GameCardHashFileSystemPartitionType_Count)) || !content_info || \ content_info->content_type >= NcmContentType_DeltaFragment) { LOG_MSG("Invalid parameters!"); return false; } /* Clear output NCA context. */ memset(out, 0, sizeof(NcaContext)); /* Fill NCA context. */ out->storage_id = storage_id; out->ncm_storage = (out->storage_id != NcmStorageId_GameCard ? ncm_storage : NULL); memcpy(&(out->content_id), &(content_info->content_id), sizeof(NcmContentId)); utilsGenerateHexStringFromData(out->content_id_str, sizeof(out->content_id_str), out->content_id.c, sizeof(out->content_id.c), false); utilsGenerateHexStringFromData(out->hash_str, sizeof(out->hash_str), out->hash, sizeof(out->hash), false); /* Placeholder, needs to be manually calculated. */ out->content_type = content_info->content_type; out->id_offset = content_info->id_offset; out->title_version = title_version; titleConvertNcmContentSizeToU64(content_info->size, &(out->content_size)); if (out->content_size < NCA_FULL_HEADER_LENGTH) { LOG_MSG("Invalid size for NCA \"%s\"!", out->content_id_str); return false; } if (out->storage_id == NcmStorageId_GameCard) { /* Generate gamecard NCA filename. */ char nca_filename[0x30] = {0}; sprintf(nca_filename, "%s.%s", out->content_id_str, out->content_type == NcmContentType_Meta ? "cnmt.nca" : "nca"); /* Retrieve gamecard NCA offset. */ if (!gamecardGetHashFileSystemEntryInfoByName(hfs_partition_type, nca_filename, &(out->gamecard_offset), NULL)) { LOG_MSG("Error retrieving offset for \"%s\" entry in secure hash FS partition!", nca_filename); return false; } } /* Read decrypted NCA header and NCA FS section headers. */ if (!ncaReadDecryptedHeader(out)) { LOG_MSG("Failed to read decrypted NCA \"%s\" header!", out->content_id_str); return false; } if (out->rights_id_available) { Ticket tmp_tik = {0}; Ticket *usable_tik = (tik ? tik : &tmp_tik); /* Retrieve ticket. */ /* This will return true if it has already been retrieved. */ if (tikRetrieveTicketByRightsId(usable_tik, &(out->header.rights_id), out->storage_id == NcmStorageId_GameCard)) { /* Copy decrypted titlekey. */ memcpy(out->titlekey, usable_tik->dec_titlekey, 0x10); out->titlekey_retrieved = true; } else { LOG_MSG("Error retrieving ticket for NCA \"%s\"!", out->content_id_str); } } /* Parse NCA FS sections. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { /* Increase valid NCA FS section count if the FS section is valid. */ if (ncaInitializeFsSectionContext(out, i)) valid_fs_section_cnt++; } if (!valid_fs_section_cnt) LOG_MSG("Unable to identify any valid FS sections in NCA \"%s\"!", out->content_id_str); return (valid_fs_section_cnt > 0); } bool ncaReadContentFile(NcaContext *ctx, void *out, u64 read_size, u64 offset) { if (!ctx || !*(ctx->content_id_str) || (ctx->storage_id != NcmStorageId_GameCard && !ctx->ncm_storage) || (ctx->storage_id == NcmStorageId_GameCard && !ctx->gamecard_offset) || !out || \ !read_size || (offset + read_size) > ctx->content_size) { LOG_MSG("Invalid parameters!"); return false; } Result rc = 0; bool ret = false; if (ctx->storage_id != NcmStorageId_GameCard) { /* Retrieve NCA data normally. */ /* This strips NAX0 crypto from SD card NCAs (not used on eMMC NCAs). */ rc = ncmContentStorageReadContentIdFile(ctx->ncm_storage, out, read_size, &(ctx->content_id), offset); ret = R_SUCCEEDED(rc); if (!ret) LOG_MSG("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (0x%08X) (ncm).", read_size, offset, ctx->content_id_str, rc); } else { /* Retrieve NCA data using raw gamecard reads. */ /* Fixes NCA read issues with gamecards under HOS < 4.0.0 when using ncmContentStorageReadContentIdFile(). */ ret = gamecardReadStorage(out, read_size, ctx->gamecard_offset + offset); if (!ret) LOG_MSG("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (gamecard).", read_size, offset, ctx->content_id_str); } return ret; } bool ncaGetFsSectionHashTargetExtents(NcaFsSectionContext *ctx, u64 *out_offset, u64 *out_size) { if (!ctx || (!out_offset && !out_size)) { LOG_MSG("Invalid parameters!"); return false; } bool success = true; switch(ctx->hash_type) { case NcaHashType_None: if (out_offset) *out_offset = 0; if (out_size) *out_size = ctx->section_size; break; case NcaHashType_HierarchicalSha256: case NcaHashType_HierarchicalSha3256: { u32 layer_count = ctx->header.hash_data.hierarchical_sha256_data.hash_region_count; NcaRegion *hash_region = &(ctx->header.hash_data.hierarchical_sha256_data.hash_region[layer_count - 1]); if (out_offset) *out_offset = hash_region->offset; if (out_size) *out_size = hash_region->size; } break; case NcaHashType_HierarchicalIntegrity: case NcaHashType_HierarchicalIntegritySha3: { NcaHierarchicalIntegrityVerificationLevelInformation *lvl_info = &(ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[NCA_IVFC_LEVEL_COUNT - 1]); if (out_offset) *out_offset = lvl_info->offset; if (out_size) *out_size = lvl_info->size; } break; default: success = false; break; } return success; } bool ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset) { bool ret = false; SCOPED_LOCK(&g_ncaCryptoBufferMutex) ret = _ncaReadFsSection(ctx, out, read_size, offset); return ret; } bool ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val, bool decrypt) { bool ret = false; SCOPED_LOCK(&g_ncaCryptoBufferMutex) ret = _ncaReadAesCtrExStorageFromBktrSection(ctx, out, read_size, offset, ctr_val, decrypt); return ret; } bool ncaGenerateHierarchicalSha256Patch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalSha256Patch *out) { bool ret = false; SCOPED_LOCK(&g_ncaCryptoBufferMutex) ret = ncaGenerateHashDataPatch(ctx, data, data_size, data_offset, out, false); return ret; } void ncaWriteHierarchicalSha256PatchToMemoryBuffer(NcaContext *ctx, NcaHierarchicalSha256Patch *patch, void *buf, u64 buf_size, u64 buf_offset) { if (!ctx || !*(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH || !patch || patch->written || memcmp(patch->content_id.c, ctx->content_id.c, 0x10) != 0 || \ !patch->hash_region_count || patch->hash_region_count > NCA_HIERARCHICAL_SHA256_MAX_REGION_COUNT || !buf || !buf_size || (buf_offset + buf_size) > ctx->content_size) return; patch->written = true; for(u32 i = 0; i < patch->hash_region_count; i++) { NcaHashDataPatch *hash_region_patch = &(patch->hash_region_patch[i]); if (hash_region_patch->written) continue; hash_region_patch->written = ncaWritePatchToMemoryBuffer(ctx, hash_region_patch->data, hash_region_patch->size, hash_region_patch->offset, buf, buf_size, buf_offset); if (!hash_region_patch->written) patch->written = false; } } bool ncaGenerateHierarchicalIntegrityPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalIntegrityPatch *out) { bool ret = false; SCOPED_LOCK(&g_ncaCryptoBufferMutex) ret = ncaGenerateHashDataPatch(ctx, data, data_size, data_offset, out, true); return ret; } void ncaWriteHierarchicalIntegrityPatchToMemoryBuffer(NcaContext *ctx, NcaHierarchicalIntegrityPatch *patch, void *buf, u64 buf_size, u64 buf_offset) { if (!ctx || !*(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH || !patch || patch->written || memcmp(patch->content_id.c, ctx->content_id.c, 0x10) != 0 || \ !buf || !buf_size || (buf_offset + buf_size) > ctx->content_size) return; patch->written = true; for(u32 i = 0; i < NCA_IVFC_LEVEL_COUNT; i++) { NcaHashDataPatch *hash_level_patch = &(patch->hash_level_patch[i]); if (hash_level_patch->written) continue; hash_level_patch->written = ncaWritePatchToMemoryBuffer(ctx, hash_level_patch->data, hash_level_patch->size, hash_level_patch->offset, buf, buf_size, buf_offset); if (!hash_level_patch->written) patch->written = false; } } void ncaSetDownloadDistributionType(NcaContext *ctx) { if (!ctx || ctx->content_size < NCA_FULL_HEADER_LENGTH || !*(ctx->content_id_str) || ctx->content_type > NcmContentType_DeltaFragment || \ ctx->header.distribution_type == NcaDistributionType_Download) return; ctx->header.distribution_type = NcaDistributionType_Download; LOG_MSG("Set download distribution type to %s NCA \"%s\".", titleGetNcmContentTypeName(ctx->content_type), ctx->content_id_str); } bool ncaRemoveTitleKeyCrypto(NcaContext *ctx) { if (!ctx || ctx->content_size < NCA_FULL_HEADER_LENGTH || !*(ctx->content_id_str) || ctx->content_type > NcmContentType_DeltaFragment) { LOG_MSG("Invalid parameters!"); return false; } /* Don't proceed if we're not dealing with a NCA with a populated rights ID field, or if we couldn't retrieve the titlekey for it. */ if (!ctx->rights_id_available || !ctx->titlekey_retrieved) return true; /* Copy decrypted titlekey to the decrypted NCA key area. This will be reencrypted at a later stage. */ /* AES-128-XTS is not used in FS sections from NCAs with titlekey crypto. */ /* Patch RomFS sections also use the AES-128-CTR key from the decrypted NCA key area, for some reason. */ memcpy(ctx->decrypted_key_area.aes_ctr, ctx->titlekey, AES_128_KEY_SIZE); /* Encrypt NCA key area. */ if (!ncaEncryptKeyArea(ctx)) { LOG_MSG("Error encrypting %s NCA \"%s\" key area!", titleGetNcmContentTypeName(ctx->content_type), ctx->content_id_str); return false; } /* Wipe Rights ID. */ memset(&(ctx->header.rights_id), 0, sizeof(FsRightsId)); /* Update context flags. */ ctx->rights_id_available = false; LOG_MSG("Removed titlekey crypto from %s NCA \"%s\".", titleGetNcmContentTypeName(ctx->content_type), ctx->content_id_str); return true; } bool ncaEncryptHeader(NcaContext *ctx) { if (!ctx || !*(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH) { LOG_MSG("Invalid NCA context!"); return false; } /* Safety check: don't encrypt the header if we don't need to. */ if (!ncaIsHeaderDirty(ctx)) return true; size_t crypt_res = 0; const u8 *header_key = keysGetNcaHeaderKey(); Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0}; if (!header_key) { LOG_MSG("Failed to retrieve NCA header key!"); return false; } /* Prepare AES-128-XTS contexts. */ aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + AES_128_KEY_SIZE, true); if (ctx->format_version == NcaVersion_Nca0) aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_key_area.aes_xts_1, ctx->decrypted_key_area.aes_xts_2, true); /* Encrypt NCA header. */ crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->encrypted_header), &(ctx->header), sizeof(NcaHeader), 0, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != sizeof(NcaHeader)) { LOG_MSG("Error encrypting NCA \"%s\" header!", ctx->content_id_str); return false; } /* Encrypt NCA FS section headers. */ /* Both NCA2 and NCA3 place the NCA FS section headers right after the NCA header. However, NCA0 places them at the start sector from each NCA FS section. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsInfo *fs_info = &(ctx->header.fs_info[i]); NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); /* Don't proceed if this NCA FS section isn't populated. */ if (!ncaIsFsInfoEntryValid(fs_info)) continue; /* The AES-XTS sector number for each NCA FS header varies depending on the NCA format version. */ /* NCA3 uses sector number 0 for the NCA header, then increases it with each new sector (e.g. making the first NCA FS section header use sector number 2, and so on). */ /* NCA2 uses sector number 0 for each NCA FS section header. */ /* NCA0 uses sector number 0 for the NCA header, then uses sector number 0 for the rest of the data and increases it with each new sector. */ Aes128XtsContext *aes_xts_ctx = (ctx->format_version != NcaVersion_Nca0 ? &hdr_aes_ctx : &nca0_fs_header_ctx); u64 sector = (ctx->format_version == NcaVersion_Nca3 ? (2U + i) : (ctx->format_version == NcaVersion_Nca2 ? 0 : (fs_info->start_sector - 2))); crypt_res = aes128XtsNintendoCrypt(aes_xts_ctx, &(fs_ctx->encrypted_header), &(fs_ctx->header), sizeof(NcaFsHeader), sector, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != sizeof(NcaFsHeader)) { LOG_MSG("Error encrypting NCA%u \"%s\" FS section header #%u!", ctx->format_version, ctx->content_id_str, i); return false; } } return true; } void ncaWriteEncryptedHeaderDataToMemoryBuffer(NcaContext *ctx, void *buf, u64 buf_size, u64 buf_offset) { /* Return right away if we're dealing with invalid parameters. */ /* In order to avoid taking up too much execution time when this function is called (ideally inside a loop), we won't use ncaIsHeaderDirty() here. Let the user take care of it instead. */ if (!ctx || ctx->header_written || ctx->content_size < NCA_FULL_HEADER_LENGTH || !buf || !buf_size || (buf_offset + buf_size) > ctx->content_size) return; ctx->header_written = true; /* Attempt to write the NCA header. */ /* Return right away if the NCA header was only partially written. */ if (buf_offset < sizeof(NcaHeader) && !ncaWritePatchToMemoryBuffer(ctx, &(ctx->encrypted_header), sizeof(NcaHeader), 0, buf, buf_size, buf_offset)) { ctx->header_written = false; return; } /* Attempt to write NCA FS section headers. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); if (!fs_ctx->enabled || fs_ctx->header_written) continue; u64 fs_header_offset = (ctx->format_version != NcaVersion_Nca0 ? (sizeof(NcaHeader) + (i * sizeof(NcaFsHeader))) : fs_ctx->section_offset); fs_ctx->header_written = ncaWritePatchToMemoryBuffer(ctx, &(fs_ctx->encrypted_header), sizeof(NcaFsHeader), fs_header_offset, buf, buf_size, buf_offset); if (!fs_ctx->header_written) ctx->header_written = false; } } void ncaUpdateContentIdAndHash(NcaContext *ctx, u8 hash[SHA256_HASH_SIZE]) { if (!ctx) return; /* Update content ID. */ memcpy(ctx->content_id.c, hash, sizeof(ctx->content_id.c)); utilsGenerateHexStringFromData(ctx->content_id_str, sizeof(ctx->content_id_str), ctx->content_id.c, sizeof(ctx->content_id.c), false); /* Update content hash. */ memcpy(ctx->hash, hash, sizeof(ctx->hash)); utilsGenerateHexStringFromData(ctx->hash_str, sizeof(ctx->hash_str), ctx->hash, sizeof(ctx->hash), false); } const char *ncaGetFsSectionTypeName(NcaFsSectionContext *ctx) { NcaContext *nca_ctx = NULL; const char *str = "Invalid"; bool is_exefs = false; if (!ctx || !(nca_ctx = (NcaContext*)ctx->nca_ctx)) return str; is_exefs = (nca_ctx->content_type == NcmContentType_Program && ctx->section_idx == 0); switch(ctx->section_type) { case NcaFsSectionType_PartitionFs: str = (is_exefs ? "ExeFS" : "Partition FS"); break; case NcaFsSectionType_RomFs: str = "RomFS"; break; case NcaFsSectionType_PatchRomFs: str = "Patch RomFS"; break; case NcaFsSectionType_Nca0RomFs: str = "NCA0 RomFS"; break; default: break; } return str; } NX_INLINE bool ncaIsFsInfoEntryValid(NcaFsInfo *fs_info) { if (!fs_info) return false; NcaFsInfo tmp_fs_info = {0}; return (memcmp(&tmp_fs_info, fs_info, sizeof(NcaFsInfo)) != 0); } static bool ncaReadDecryptedHeader(NcaContext *ctx) { if (!ctx || !*(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH) { LOG_MSG("Invalid NCA context!"); return false; } u32 magic = 0; size_t crypt_res = 0; const u8 *header_key = keysGetNcaHeaderKey(); Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0}; if (!header_key) { LOG_MSG("Failed to retrieve NCA header key!"); return false; } /* Read NCA header. */ if (!ncaReadContentFile(ctx, &(ctx->encrypted_header), sizeof(NcaHeader), 0)) { LOG_MSG("Failed to read NCA \"%s\" header!", ctx->content_id_str); return false; } /* Prepare NCA header AES-128-XTS context. */ aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + AES_128_KEY_SIZE, false); /* Decrypt NCA header. */ crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->encrypted_header), sizeof(NcaHeader), 0, NCA_AES_XTS_SECTOR_SIZE, false); magic = __builtin_bswap32(ctx->header.magic); if (crypt_res != sizeof(NcaHeader) || (magic != NCA_NCA3_MAGIC && magic != NCA_NCA2_MAGIC && magic != NCA_NCA0_MAGIC) || ctx->header.content_size != ctx->content_size) { LOG_MSG("Error decrypting NCA \"%s\" header!", ctx->content_id_str); return false; } /* Fill additional NCA context info. */ ctx->format_version = (magic == NCA_NCA3_MAGIC ? NcaVersion_Nca3 : (magic == NCA_NCA2_MAGIC ? NcaVersion_Nca2 : NcaVersion_Nca0)); ctx->key_generation = ncaGetKeyGenerationValue(ctx); ctx->rights_id_available = ncaCheckRightsIdAvailability(ctx); sha256CalculateHash(ctx->header_hash, &(ctx->header), sizeof(NcaHeader)); ctx->valid_main_signature = ncaVerifyMainSignature(ctx); /* Decrypt NCA key area (if needed). */ if (!ctx->rights_id_available && !ncaDecryptKeyArea(ctx)) { LOG_MSG("Error decrypting NCA \"%s\" key area!", ctx->content_id_str); return false; } /* Prepare NCA0 FS header AES-128-XTS context (if needed). */ if (ctx->format_version == NcaVersion_Nca0) aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_key_area.aes_xts_1, ctx->decrypted_key_area.aes_xts_2, false); /* Read decrypted NCA FS section headers. */ /* Both NCA2 and NCA3 place the NCA FS section headers right after the NCA header. However, NCA0 places them at the start sector from each NCA FS section. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsInfo *fs_info = &(ctx->header.fs_info[i]); NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); /* Don't proceed if this NCA FS section isn't populated. */ if (!ncaIsFsInfoEntryValid(fs_info)) continue; /* Read NCA FS section header. */ u64 fs_header_offset = (ctx->format_version != NcaVersion_Nca0 ? (sizeof(NcaHeader) + (i * sizeof(NcaFsHeader))) : NCA_FS_SECTOR_OFFSET(fs_info->start_sector)); if (!ncaReadContentFile(ctx, &(fs_ctx->encrypted_header), sizeof(NcaFsHeader), fs_header_offset)) { LOG_MSG("Failed to read NCA%u \"%s\" FS section header #%u at offset 0x%lX!", ctx->format_version, ctx->content_id_str, i, fs_header_offset); return false; } /* The AES-XTS sector number for each NCA FS header varies depending on the NCA format version. */ /* NCA3 uses sector number 0 for the NCA header, then increases it with each new sector (e.g. making the first NCA FS section header use sector number 2, and so on). */ /* NCA2 uses sector number 0 for each NCA FS section header. */ /* NCA0 uses sector number 0 for the NCA header, then uses sector number 0 for the rest of the data and increases it with each new sector. */ Aes128XtsContext *aes_xts_ctx = (ctx->format_version != NcaVersion_Nca0 ? &hdr_aes_ctx : &nca0_fs_header_ctx); u64 sector = (ctx->format_version == NcaVersion_Nca3 ? (2U + i) : (ctx->format_version == NcaVersion_Nca2 ? 0 : (fs_info->start_sector - 2))); crypt_res = aes128XtsNintendoCrypt(aes_xts_ctx, &(fs_ctx->header), &(fs_ctx->encrypted_header), sizeof(NcaFsHeader), sector, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != sizeof(NcaFsHeader)) { LOG_MSG("Error decrypting NCA%u \"%s\" FS section header #%u!", ctx->format_version, ctx->content_id_str, i); return false; } } return true; } static bool ncaDecryptKeyArea(NcaContext *ctx) { if (!ctx) { LOG_MSG("Invalid NCA context!"); return false; } const u8 null_key[AES_128_KEY_SIZE] = {0}; u8 key_count = NCA_KEY_AREA_USED_KEY_COUNT; if (ctx->format_version == NcaVersion_Nca0) key_count--; /* Check if we're dealing with a NCA0 with a plaintext key area. */ if (ncaIsVersion0KeyAreaEncrypted(ctx)) { memcpy(&(ctx->decrypted_key_area), &(ctx->header.encrypted_key_area), sizeof(NcaDecryptedKeyArea)); return true; } /* Clear decrypted key area. */ memset(&(ctx->decrypted_key_area), 0, sizeof(NcaDecryptedKeyArea)); /* Process key area. */ for(u8 i = 0; i < key_count; i++) { const u8 *src_key = ctx->header.encrypted_key_area.keys[i]; u8 *dst_key = ctx->decrypted_key_area.keys[i]; /* Don't proceed if we're dealing with a null key. */ if (!memcmp(src_key, null_key, AES_128_KEY_SIZE)) continue; /* Decrypt current key area entry. */ if (!keysDecryptNcaKeyAreaEntry(ctx->header.kaek_index, ctx->key_generation, dst_key, src_key)) { LOG_MSG("Failed to decrypt NCA key area entry #%u!", i); return false; } } return true; } static bool ncaEncryptKeyArea(NcaContext *ctx) { if (!ctx) { LOG_MSG("Invalid NCA context!"); return false; } u8 key_count = NCA_KEY_AREA_USED_KEY_COUNT; if (ctx->format_version == NcaVersion_Nca0) key_count--; const u8 *kaek = NULL, null_key[AES_128_KEY_SIZE] = {0}; Aes128Context key_area_ctx = {0}; /* Check if we're dealing with a NCA0 with a plaintext key area. */ if (ncaIsVersion0KeyAreaEncrypted(ctx)) { memcpy(&(ctx->header.encrypted_key_area), &(ctx->decrypted_key_area), sizeof(NcaDecryptedKeyArea)); return true; } /* Get KAEK for these key generation and KAEK index values. */ kaek = keysGetNcaKeyAreaEncryptionKey(ctx->header.kaek_index, ctx->key_generation); if (!kaek) { LOG_MSG("Unable to retrieve KAEK for KAEK index 0x%02X and key generation 0x%02X!", ctx->header.kaek_index, ctx->key_generation); return false; } /* Clear encrypted key area. */ memset(&(ctx->header.encrypted_key_area), 0, sizeof(NcaEncryptedKeyArea)); /* Initialize AES-128-ECB encryption context using the retrieved KAEK. */ aes128ContextCreate(&key_area_ctx, kaek, true); /* Process key area. */ for(u8 i = 0; i < key_count; i++) { const u8 *src_key = ctx->decrypted_key_area.keys[i]; u8 *dst_key = ctx->header.encrypted_key_area.keys[i]; /* Don't proceed if we're dealing with a null key. */ if (!memcmp(src_key, null_key, AES_128_KEY_SIZE)) continue; /* Encrypt current key area entry. */ aes128EncryptBlock(&key_area_ctx, dst_key, src_key); } return true; } static bool ncaVerifyMainSignature(NcaContext *ctx) { if (!ctx) { LOG_MSG("Invalid NCA context!"); return false; } /* Retrieve modulus for the NCA main signature. */ const u8 *modulus = keysGetNcaMainSignatureModulus(ctx->header.main_signature_key_generation); if (!modulus) return false; /* Verify NCA signature. */ return rsa2048VerifySha256BasedPssSignature(&(ctx->header.magic), NCA_SIGNATURE_AREA_SIZE, ctx->header.main_signature, modulus, g_ncaHeaderMainSignaturePublicExponent, \ sizeof(g_ncaHeaderMainSignaturePublicExponent)); } NX_INLINE bool ncaIsVersion0KeyAreaEncrypted(NcaContext *ctx) { if (!ctx || ctx->format_version != NcaVersion_Nca0) return false; u8 nca0_key_area_hash[SHA256_HASH_SIZE] = {0}; sha256CalculateHash(nca0_key_area_hash, &(ctx->header.encrypted_key_area), 4 * AES_128_KEY_SIZE); return (memcmp(nca0_key_area_hash, g_nca0KeyAreaHash, SHA256_HASH_SIZE) != 0); } NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx) { if (!ctx) return 0; return (ctx->header.key_generation > ctx->header.key_generation_old ? ctx->header.key_generation : ctx->header.key_generation_old); } NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx) { if (!ctx) return false; for(u8 i = 0; i < 0x10; i++) { if (ctx->header.rights_id.c[i]) return true; } return false; } static bool ncaInitializeFsSectionContext(NcaContext *nca_ctx, u32 section_idx) { if (!nca_ctx || section_idx >= NCA_FS_HEADER_COUNT) { LOG_MSG("Invalid parameters!"); return false; } NcaFsInfo *fs_info = &(nca_ctx->header.fs_info[section_idx]); NcaFsSectionContext *fs_ctx = &(nca_ctx->fs_ctx[section_idx]); u8 fs_header_hash_calc[SHA256_HASH_SIZE] = {0}; u8 *fs_header_hash = nca_ctx->header.fs_header_hash[section_idx].hash; NcaSparseInfo *sparse_info = &(fs_ctx->header.sparse_info); NcaBucketInfo *sparse_bucket = &(sparse_info->bucket); NcaBucketInfo *compression_bucket = &(fs_ctx->header.compression_info.bucket); bool success = false; /* Fill section context. */ fs_ctx->enabled = false; fs_ctx->nca_ctx = nca_ctx; fs_ctx->section_idx = section_idx; fs_ctx->section_type = NcaFsSectionType_Invalid; /* Placeholder. */ fs_ctx->has_patch_indirect_layer = (fs_ctx->header.patch_info.indirect_bucket.size > 0); fs_ctx->has_patch_aes_ctr_ex_layer = (fs_ctx->header.patch_info.aes_ctr_ex_bucket.size > 0); fs_ctx->has_sparse_layer = (sparse_info->generation != 0); fs_ctx->has_compression_layer = (compression_bucket->offset != 0 && compression_bucket->size != 0); fs_ctx->cur_sparse_virtual_offset = 0; /* Don't proceed if this NCA FS section isn't populated. */ if (!ncaIsFsInfoEntryValid(fs_info)) { //LOG_MSG("Invalid FsInfo entry for section #%u in \"%s\". Skipping FS section.", section_idx, nca_ctx->content_id_str); goto end; } /* Calculate NCA FS section header hash. Don't proceed if there's a checksum mismatch. */ sha256CalculateHash(fs_header_hash_calc, &(fs_ctx->header), sizeof(NcaFsHeader)); if (memcmp(fs_header_hash_calc, fs_header_hash, SHA256_HASH_SIZE) != 0) { LOG_MSG("Checksum mismatch for FS section header #%u in \"%s\". Skipping FS section.", section_idx, nca_ctx->content_id_str); goto end; } /* Calculate section offset and size. */ fs_ctx->section_offset = NCA_FS_SECTOR_OFFSET(fs_info->start_sector); fs_ctx->section_size = (NCA_FS_SECTOR_OFFSET(fs_info->end_sector) - fs_ctx->section_offset); /* Check if we're dealing with an invalid start offset or an empty size. */ if (fs_ctx->section_offset < sizeof(NcaHeader) || !fs_ctx->section_size) { LOG_MSG("Invalid offset/size for FS section #%u in \"%s\" (0x%lX, 0x%lX). Skipping FS section.", section_idx, nca_ctx->content_id_str, fs_ctx->section_offset, \ fs_ctx->section_size); goto end; } /* Determine FS section hash type. */ fs_ctx->hash_type = fs_ctx->header.hash_type; if (fs_ctx->hash_type == NcaHashType_Auto || fs_ctx->hash_type == NcaHashType_AutoSha3) { switch(fs_ctx->section_idx) { case 0: /* ExeFS Partition FS. */ case 2: /* Logo Partition FS. */ fs_ctx->hash_type = (fs_ctx->hash_type == NcaHashType_Auto ? NcaHashType_HierarchicalSha256 : NcaHashType_HierarchicalSha3256); break; case 1: /* RomFS. */ fs_ctx->hash_type = (fs_ctx->hash_type == NcaHashType_Auto ? NcaHashType_HierarchicalIntegrity : NcaHashType_HierarchicalIntegritySha3); break; default: break; } } if (fs_ctx->hash_type == NcaHashType_Auto || fs_ctx->hash_type == NcaHashType_AutoSha3 || fs_ctx->hash_type > NcaHashType_HierarchicalIntegritySha3) { LOG_MSG("Invalid hash type for FS section #%u in \"%s\" (0x%02X). Skipping FS section.", section_idx, nca_ctx->content_id_str, fs_ctx->hash_type); goto end; } /* Determine FS section encryption type. */ fs_ctx->encryption_type = (nca_ctx->format_version == NcaVersion_Nca0 ? NcaEncryptionType_AesXts : fs_ctx->header.encryption_type); if (fs_ctx->encryption_type == NcaEncryptionType_Auto) { switch(fs_ctx->section_idx) { case 0: /* ExeFS Partition FS. */ case 1: /* RomFS. */ fs_ctx->encryption_type = NcaEncryptionType_AesCtr; break; case 2: /* Logo Partition FS. */ fs_ctx->encryption_type = NcaEncryptionType_None; break; default: break; } } if (fs_ctx->encryption_type == NcaEncryptionType_Auto || fs_ctx->encryption_type > NcaEncryptionType_AesCtrExSkipLayerHash) { LOG_MSG("Invalid encryption type for FS section #%u in \"%s\" (0x%02X). Skipping FS section.", section_idx, nca_ctx->content_id_str, fs_ctx->encryption_type); goto end; } /* Check if we're dealing with a sparse layer. */ if (fs_ctx->has_sparse_layer) { /* Check if the sparse bucket is valid. */ u64 raw_storage_offset = sparse_info->physical_offset; u64 raw_storage_size = (sparse_bucket->offset + sparse_bucket->size); if (!ncaVerifyBucketInfo(sparse_bucket) || raw_storage_offset < sizeof(NcaHeader) || (raw_storage_offset + raw_storage_size) > nca_ctx->content_size) { LOG_DATA(sparse_info, sizeof(NcaSparseInfo), "Invalid SparseInfo data for FS section #%u in \"%s\" (0x%lX). Skipping FS section. SparseInfo dump:", section_idx, \ nca_ctx->content_id_str, nca_ctx->content_size); goto end; } if (!raw_storage_size || !sparse_bucket->header.entry_count) { /* Return true but don't set this FS section as enabled, since we can't really use it. */ LOG_MSG("Empty SparseInfo data detected for FS section #%u in \"%s\". Skipping FS section.", section_idx, nca_ctx->content_id_str); success = true; goto end; } /* Update context. */ fs_ctx->sparse_table_offset = (sparse_info->physical_offset + sparse_bucket->offset); fs_ctx->section_size = raw_storage_size; } /* Check if we're dealing with a compression layer. */ if (fs_ctx->has_compression_layer) { u64 raw_storage_offset = 0; u64 raw_storage_size = compression_bucket->size; /* Get target hash layer offset. */ if (!ncaGetFsSectionHashTargetExtents(fs_ctx, &raw_storage_offset, NULL)) { LOG_MSG("Invalid hash type for FS section #%u in \"%s\" (0x%02X). Skipping FS section.", fs_ctx->section_idx, nca_ctx->content_id_str, fs_ctx->hash_type); goto end; } /* Update compression layer offset. */ raw_storage_offset += compression_bucket->offset; /* Check if the compression bucket is valid. */ if (!ncaVerifyBucketInfo(compression_bucket) || !compression_bucket->header.entry_count || raw_storage_offset < sizeof(NcaHeader) || \ (raw_storage_offset + raw_storage_size) > fs_ctx->section_size || (fs_ctx->section_offset + raw_storage_offset + raw_storage_size) > nca_ctx->content_size) { LOG_DATA(compression_bucket, sizeof(NcaBucketInfo), "Invalid CompressionInfo data for FS section #%u in \"%s\" (0x%lX). Skipping FS section. CompressionInfo dump:", \ section_idx, nca_ctx->content_id_str, nca_ctx->content_size); goto end; } /* Update context. */ fs_ctx->compression_table_offset = raw_storage_offset; } /* Check if we're within boundaries. */ if ((fs_ctx->section_offset + fs_ctx->section_size) > nca_ctx->content_size) { LOG_MSG("FS section #%u in \"%s\" is out of NCA boundaries. Skipping FS section.", section_idx, nca_ctx->content_id_str); goto end; } /* Determine FS section type. */ /* TODO: should NcaHashType_None be handled here as well? */ switch(fs_ctx->header.fs_type) { case NcaFsType_PartitionFs: if ((fs_ctx->hash_type == NcaHashType_HierarchicalSha256 || fs_ctx->hash_type == NcaHashType_HierarchicalSha3256) && \ (fs_ctx->encryption_type < NcaEncryptionType_AesCtrEx || fs_ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash)) { /* Partition FS with None, XTS or CTR encryption. */ fs_ctx->section_type = NcaFsSectionType_PartitionFs; } break; case NcaFsType_RomFs: if (fs_ctx->hash_type == NcaHashType_HierarchicalIntegrity || fs_ctx->hash_type == NcaHashType_HierarchicalIntegritySha3) { if (fs_ctx->has_patch_indirect_layer && fs_ctx->has_patch_aes_ctr_ex_layer && \ (fs_ctx->encryption_type == NcaEncryptionType_None || fs_ctx->encryption_type == NcaEncryptionType_AesCtrEx || \ fs_ctx->encryption_type == NcaEncryptionType_AesCtrExSkipLayerHash)) { /* Patch RomFS. */ fs_ctx->section_type = NcaFsSectionType_PatchRomFs; } else if (!fs_ctx->has_patch_indirect_layer && !fs_ctx->has_patch_aes_ctr_ex_layer && \ ((fs_ctx->encryption_type >= NcaEncryptionType_None && fs_ctx->encryption_type <= NcaEncryptionType_AesCtr) || \ fs_ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash)) { /* Regular RomFS. */ fs_ctx->section_type = NcaFsSectionType_RomFs; } } else if (nca_ctx->format_version == NcaVersion_Nca0 && fs_ctx->hash_type == NcaHashType_HierarchicalSha256) { /* NCA0 RomFS with XTS encryption. */ fs_ctx->section_type = NcaFsSectionType_Nca0RomFs; } break; default: break; } if (fs_ctx->section_type >= NcaFsSectionType_Invalid) { LOG_DATA(&(fs_ctx->header), sizeof(NcaFsHeader), "Unable to determine section type for FS section #%u in \"%s\" (0x%02X, 0x%02X). Skipping FS section. FS header dump:", \ section_idx, nca_ctx->content_id_str, fs_ctx->hash_type, fs_ctx->encryption_type); goto end; } /* Validate HashData boundaries. */ if (!ncaFsSectionValidateHashDataBoundaries(fs_ctx)) goto end; /* Get hash layer region size (offset must always be 0). */ fs_ctx->hash_region.offset = 0; if (!ncaGetFsSectionHashTargetExtents(fs_ctx, &(fs_ctx->hash_region.size), NULL)) { LOG_MSG("Invalid hash type for FS section #%u in \"%s\" (0x%02X). Skipping FS section.", fs_ctx->section_idx, nca_ctx->content_id_str, fs_ctx->hash_type); goto end; } /* Check if we're within boundaries. */ if (fs_ctx->hash_region.size > fs_ctx->section_size || (fs_ctx->section_offset + fs_ctx->hash_region.size) > nca_ctx->content_size) { LOG_MSG("Hash layer region for FS section #%u in \"%s\" is out of NCA boundaries. Skipping FS section.", section_idx, nca_ctx->content_id_str); goto end; } /* Check if we should skip hash layer decryption while reading this FS section. */ fs_ctx->skip_hash_layer_crypto = (fs_ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash || fs_ctx->encryption_type == NcaEncryptionType_AesCtrExSkipLayerHash); if (fs_ctx->skip_hash_layer_crypto && fs_ctx->hash_type == NcaHashType_None) { LOG_MSG("NcaHashType_None used with SkipLayerHash crypto for FS section #%u in \"%s\". Skipping FS section.", section_idx, nca_ctx->content_id_str); goto end; } /* Initialize crypto data. */ if ((!nca_ctx->rights_id_available || (nca_ctx->rights_id_available && nca_ctx->titlekey_retrieved)) && fs_ctx->encryption_type > NcaEncryptionType_None && \ fs_ctx->encryption_type <= NcaEncryptionType_AesCtrExSkipLayerHash) { /* Initialize the partial AES counter for this section. */ aes128CtrInitializePartialCtr(fs_ctx->ctr, fs_ctx->header.aes_ctr_upper_iv.value, fs_ctx->section_offset); /* Initialize AES context. */ if (nca_ctx->rights_id_available) { /* AES-128-CTR is always used for FS crypto in NCAs with a rights ID. */ aes128CtrContextCreate(&(fs_ctx->ctr_ctx), nca_ctx->titlekey, fs_ctx->ctr); } else { if (fs_ctx->encryption_type == NcaEncryptionType_AesXts) { /* We need to create two different contexts with AES-128-XTS: one for decryption and another one for encryption. */ aes128XtsContextCreate(&(fs_ctx->xts_decrypt_ctx), nca_ctx->decrypted_key_area.aes_xts_1, nca_ctx->decrypted_key_area.aes_xts_2, false); aes128XtsContextCreate(&(fs_ctx->xts_encrypt_ctx), nca_ctx->decrypted_key_area.aes_xts_1, nca_ctx->decrypted_key_area.aes_xts_2, true); } else if (fs_ctx->encryption_type >= NcaEncryptionType_AesCtr && fs_ctx->encryption_type <= NcaEncryptionType_AesCtrExSkipLayerHash) { /* Patch RomFS sections also use the AES-128-CTR key from the decrypted NCA key area, for some reason. */ aes128CtrContextCreate(&(fs_ctx->ctr_ctx), nca_ctx->decrypted_key_area.aes_ctr, fs_ctx->ctr); } } } /* Enable FS context if we got up to this point. */ fs_ctx->enabled = success = true; end: return success; } static bool ncaFsSectionValidateHashDataBoundaries(NcaFsSectionContext *ctx) { NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; bool success = false, valid = true; u64 accum = 0; switch(ctx->hash_type) { case NcaHashType_None: /* Nothing to validate. */ success = true; break; case NcaHashType_HierarchicalSha256: case NcaHashType_HierarchicalSha3256: { NcaHierarchicalSha256Data *hash_data = &(ctx->header.hash_data.hierarchical_sha256_data); if (!hash_data->hash_block_size || !hash_data->hash_region_count || hash_data->hash_region_count > NCA_HIERARCHICAL_SHA256_MAX_REGION_COUNT) { LOG_DATA(hash_data, sizeof(NcaHierarchicalSha256Data), "Invalid HierarchicalSha256 data for FS section #%u in \"%s\". Skipping FS section. Hash data dump:", \ ctx->section_idx, nca_ctx->content_id_str); break; } for(u32 i = 0; i < hash_data->hash_region_count; i++) { /* Validate all hash regions boundaries. Skip the last one if a sparse layer is used. */ NcaRegion *hash_region = &(hash_data->hash_region[i]); if (hash_region->offset < accum || !hash_region->size || \ ((i < (hash_data->hash_region_count - 1) || !ctx->has_sparse_layer) && (hash_region->offset + hash_region->size) > ctx->section_size)) { LOG_MSG("HierarchicalSha256 region #%u for FS section #%u in \"%s\" is out of NCA boundaries. Skipping FS section.", \ i, ctx->section_idx, nca_ctx->content_id_str); valid = false; break; } accum = (hash_region->offset + hash_region->size); } success = valid; } break; case NcaHashType_HierarchicalIntegrity: case NcaHashType_HierarchicalIntegritySha3: { NcaIntegrityMetaInfo *hash_data = &(ctx->header.hash_data.integrity_meta_info); if (__builtin_bswap32(hash_data->magic) != NCA_IVFC_MAGIC || hash_data->master_hash_size != SHA256_HASH_SIZE || \ hash_data->info_level_hash.max_level_count != NCA_IVFC_MAX_LEVEL_COUNT) { LOG_DATA(hash_data, sizeof(NcaIntegrityMetaInfo), "Invalid HierarchicalIntegrity data for FS section #%u in \"%s\". Skipping FS section. Hash data dump:", \ ctx->section_idx, nca_ctx->content_id_str); break; } for(u32 i = 0; i < NCA_IVFC_LEVEL_COUNT; i++) { /* Validate all level informations boundaries. Skip the last one if we're dealing with a Patch RomFS, or if a sparse layer is used. */ NcaHierarchicalIntegrityVerificationLevelInformation *lvl_info = &(hash_data->info_level_hash.level_information[i]); if (lvl_info->offset < accum || !lvl_info->size || !lvl_info->block_order || ((i < (NCA_IVFC_LEVEL_COUNT - 1) || \ (!ctx->has_sparse_layer && ctx->section_type != NcaFsSectionType_PatchRomFs)) && (lvl_info->offset + lvl_info->size) > ctx->section_size)) { LOG_MSG("HierarchicalIntegrity level #%u for FS section #%u in \"%s\" is out of NCA boundaries. Skipping FS section.", \ i, ctx->section_idx, nca_ctx->content_id_str); valid = false; break; } accum = (lvl_info->offset + lvl_info->size); } success = valid; } break; default: LOG_MSG("Invalid hash type for FS section #%u in \"%s\" (0x%02X). Skipping FS section.", ctx->section_idx, nca_ctx->content_id_str, ctx->hash_type); break; } return success; } static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset) { if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || !ctx->nca_ctx || ctx->section_idx >= NCA_FS_HEADER_COUNT || ctx->section_offset < sizeof(NcaHeader) || \ ctx->section_type >= NcaFsSectionType_Invalid || ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type > NcaEncryptionType_AesCtrExSkipLayerHash || \ !out || !read_size || (offset + read_size) > ctx->section_size) { LOG_MSG("Invalid NCA FS section header parameters!"); return false; } size_t crypt_res = 0; u64 sector_num = 0; NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + offset); u64 sparse_virtual_offset = ((ctx->has_sparse_layer && ctx->cur_sparse_virtual_offset) ? (ctx->section_offset + ctx->cur_sparse_virtual_offset) : 0); u64 iv_offset = (sparse_virtual_offset ? sparse_virtual_offset : content_offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 data_start_offset = 0, chunk_size = 0, out_chunk_size = 0; bool ret = false; if (!*(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || \ (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ (nca_ctx->format_version != NcaVersion_Nca0 && nca_ctx->format_version != NcaVersion_Nca2 && nca_ctx->format_version != NcaVersion_Nca3) || \ (content_offset + read_size) > nca_ctx->content_size) { LOG_MSG("Invalid NCA header parameters!"); goto end; } /* Check if we're supposed to read a hash layer without encryption. */ if (ncaFsSectionCheckHashRegionAccess(ctx, offset, read_size, &block_size)) { /* Read plaintext area. Use NCA-relative offset. */ if (!ncaReadContentFile(nca_ctx, out, block_size, content_offset)) { LOG_MSG("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (plaintext hash region) (#1).", block_size, content_offset, \ nca_ctx->content_id_str, ctx->section_idx); goto end; } /* Read remaining encrypted data, if needed. Use FS-section-relative offset. */ if (sparse_virtual_offset) ctx->cur_sparse_virtual_offset += block_size; ret = (read_size ? _ncaReadFsSection(ctx, (u8*)out + block_size, read_size - block_size, offset + block_size) : true); goto end; } else if (block_size && block_size < read_size) { /* Read encrypted area. Use FS-section-relative offset. */ if (!_ncaReadFsSection(ctx, out, block_size, offset)) goto end; /* Update parameters. */ read_size -= block_size; content_offset += block_size; /* Read remaining plaintext data. Use NCA-relative offset. */ ret = ncaReadContentFile(nca_ctx, (u8*)out + block_size, read_size, content_offset); if (!ret) LOG_MSG("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (plaintext hash region) (#2).", read_size, content_offset, \ nca_ctx->content_id_str, ctx->section_idx); goto end; } /* Optimization for reads from plaintext FS sections or reads that are aligned to the AES-CTR / AES-XTS sector size. */ if (ctx->encryption_type == NcaEncryptionType_None || \ (ctx->encryption_type == NcaEncryptionType_AesXts && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(read_size % NCA_AES_XTS_SECTOR_SIZE)) || \ (ctx->encryption_type >= NcaEncryptionType_AesCtr && ctx->encryption_type <= NcaEncryptionType_AesCtrExSkipLayerHash && !(content_offset % AES_BLOCK_SIZE) && !(read_size % AES_BLOCK_SIZE))) { /* Read data. */ if (!ncaReadContentFile(nca_ctx, out, read_size, content_offset)) { LOG_MSG("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, ctx->section_idx); goto end; } /* Return right away if we're dealing with a plaintext FS section. */ if (ctx->encryption_type == NcaEncryptionType_None) { ret = true; goto end; } /* Decrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), out, out, read_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != read_size) { LOG_MSG("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, \ ctx->section_idx); goto end; } } else if (ctx->encryption_type >= NcaEncryptionType_AesCtr && ctx->encryption_type <= NcaEncryptionType_AesCtrExSkipLayerHash) { aes128CtrUpdatePartialCtr(ctx->ctr, iv_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, read_size); } ret = true; goto end; } /* Calculate offsets and block sizes. */ block_start_offset = ALIGN_DOWN(content_offset, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(content_offset + read_size, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); data_start_offset = (content_offset - block_start_offset); chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size); out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size); /* Read data. */ if (!ncaReadContentFile(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset)) { LOG_MSG("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_idx); goto end; } /* Decrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != chunk_size) { LOG_MSG("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_idx); goto end; } } else if (ctx->encryption_type >= NcaEncryptionType_AesCtr && ctx->encryption_type <= NcaEncryptionType_AesCtrExSkipLayerHash) { aes128CtrUpdatePartialCtr(ctx->ctr, ALIGN_DOWN(iv_offset, AES_BLOCK_SIZE)); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size); } /* Copy decrypted data. */ memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size); /* Perform another read if required. */ if (sparse_virtual_offset && block_size > NCA_CRYPTO_BUFFER_SIZE) ctx->cur_sparse_virtual_offset += out_chunk_size; ret = (block_size > NCA_CRYPTO_BUFFER_SIZE ? _ncaReadFsSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size) : true); end: if (ctx->has_sparse_layer) ctx->cur_sparse_virtual_offset = 0; return ret; } static bool ncaFsSectionCheckHashRegionAccess(NcaFsSectionContext *ctx, u64 offset, u64 size, u64 *out_chunk_size) { if (!ctx->skip_hash_layer_crypto) return false; NcaRegion *hash_region = &(ctx->hash_region); /* Check if our region contains the access. */ if (hash_region->offset <= offset) { if (offset < (hash_region->offset + hash_region->size)) { if ((hash_region->offset + hash_region->size) <= (offset + size)) { *out_chunk_size = ((hash_region->offset + hash_region->size) - offset); } else { *out_chunk_size = size; } return true; } else { return false; } } else { if (hash_region->offset <= (offset + size)) *out_chunk_size = (hash_region->offset - offset); return false; } } static bool _ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val, bool decrypt) { if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || !ctx->nca_ctx || ctx->section_idx >= NCA_FS_HEADER_COUNT || ctx->section_offset < sizeof(NcaHeader) || \ ctx->section_type != NcaFsSectionType_PatchRomFs || (ctx->encryption_type != NcaEncryptionType_None && ctx->encryption_type != NcaEncryptionType_AesCtrEx && \ ctx->encryption_type != NcaEncryptionType_AesCtrExSkipLayerHash) || !out || !read_size || (offset + read_size) > ctx->section_size) { LOG_MSG("Invalid NCA FS section header parameters!"); return false; } NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 data_start_offset = 0, chunk_size = 0, out_chunk_size = 0; bool ret = false; if (!*(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ (content_offset + read_size) > nca_ctx->content_size) { LOG_MSG("Invalid NCA header parameters!"); goto end; } /* Optimization for reads that are aligned to the AES-CTR sector size. */ if (!decrypt || (!(content_offset % AES_BLOCK_SIZE) && !(read_size % AES_BLOCK_SIZE))) { /* Read data. */ if (!ncaReadContentFile(nca_ctx, out, read_size, content_offset)) { LOG_MSG("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, ctx->section_idx); goto end; } /* Decrypt data, if needed. */ if (decrypt) { aes128CtrUpdatePartialCtrEx(ctx->ctr, ctr_val, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, read_size); } ret = true; goto end; } /* Calculate offsets and block sizes. */ block_start_offset = ALIGN_DOWN(content_offset, AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(content_offset + read_size, AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); data_start_offset = (content_offset - block_start_offset); chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size); out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size); /* Read data. */ if (!ncaReadContentFile(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset)) { LOG_MSG("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_idx); goto end; } /* Decrypt data. */ aes128CtrUpdatePartialCtrEx(ctx->ctr, ctr_val, block_start_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size); /* Copy decrypted data. */ memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size); ret = (block_size > NCA_CRYPTO_BUFFER_SIZE ? _ncaReadAesCtrExStorageFromBktrSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size, ctr_val, decrypt) : true); end: return ret; } static void ncaCalculateLayerHash(void *dst, const void *src, size_t size, bool use_sha3) { if (use_sha3) { sha256CalculateHash(dst, src, size); } else { sha3256CalculateHash(dst, src, size); } } /* In this function, the term "layer" is used as a generic way to refer to both HierarchicalSha256 hash regions and HierarchicalIntegrity verification levels. */ static bool ncaGenerateHashDataPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, void *out, bool is_integrity_patch) { NcaContext *nca_ctx = NULL; NcaHierarchicalSha256Patch *hierarchical_sha256_patch = (!is_integrity_patch ? ((NcaHierarchicalSha256Patch*)out) : NULL); NcaHierarchicalIntegrityPatch *hierarchical_integrity_patch = (is_integrity_patch ? ((NcaHierarchicalIntegrityPatch*)out) : NULL); u8 *cur_data = NULL; u64 cur_data_offset = data_offset; u64 cur_data_size = data_size; u32 layer_count = 0; u8 *parent_layer_block = NULL, *cur_layer_block = NULL; u64 last_layer_size = 0; bool use_sha3 = false, success = false; if (!ctx || !ctx->enabled || ctx->has_sparse_layer || ctx->has_compression_layer || !(nca_ctx = (NcaContext*)ctx->nca_ctx) || \ (!is_integrity_patch && ((ctx->hash_type != NcaHashType_HierarchicalSha256 && ctx->hash_type != NcaHashType_HierarchicalSha3256) || \ !ctx->header.hash_data.hierarchical_sha256_data.hash_block_size || !(layer_count = ctx->header.hash_data.hierarchical_sha256_data.hash_region_count) || \ layer_count > NCA_HIERARCHICAL_SHA256_MAX_REGION_COUNT || !(last_layer_size = ctx->header.hash_data.hierarchical_sha256_data.hash_region[layer_count - 1].size))) || \ (is_integrity_patch && ((ctx->hash_type != NcaHashType_HierarchicalIntegrity && ctx->hash_type != NcaHashType_HierarchicalIntegritySha3) || \ !(layer_count = (ctx->header.hash_data.integrity_meta_info.info_level_hash.max_level_count - 1)) || layer_count != NCA_IVFC_LEVEL_COUNT || \ !(last_layer_size = ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[NCA_IVFC_LEVEL_COUNT - 1].size))) || !data || !data_size || \ (data_offset + data_size) > last_layer_size || !out || ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type == NcaEncryptionType_AesCtrEx || \ ctx->encryption_type >= NcaEncryptionType_AesCtrExSkipLayerHash) { LOG_MSG("Invalid parameters!"); goto end; } /* Clear output patch. */ if (!is_integrity_patch) { ncaFreeHierarchicalSha256Patch(hierarchical_sha256_patch); } else { ncaFreeHierarchicalIntegrityPatch(hierarchical_integrity_patch); } /* Check if we should use SHA3-256 instead of SHA-256 for layer hash calculation. */ use_sha3 = (ctx->hash_type == NcaHashType_HierarchicalSha3256 || ctx->hash_type == NcaHashType_HierarchicalIntegritySha3); /* Process each layer. */ for(u32 i = layer_count; i > 0; i--) { u64 hash_block_size = 0; u64 cur_layer_offset = 0, cur_layer_size = 0; u64 cur_layer_read_start_offset = 0, cur_layer_read_end_offset = 0, cur_layer_read_size = 0, cur_layer_read_patch_offset = 0; u64 parent_layer_offset = 0, parent_layer_size = 0; u64 parent_layer_read_start_offset = 0, parent_layer_read_size = 0; NcaHashDataPatch *cur_layer_patch = NULL; /* Retrieve current layer properties. */ hash_block_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_block_size : \ NCA_IVFC_BLOCK_SIZE(ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].block_order)); cur_layer_offset = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 1].offset : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].offset); cur_layer_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 1].size : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].size); /* Retrieve parent layer properties. */ /* If this is the master layer, then no properties are retrieved, since it is verified by the master hash from the HashData block in the NCA FS section header. */ if (i > 1) { parent_layer_offset = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 2].offset : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 2].offset); parent_layer_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 2].size : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 2].size); } /* Validate layer properties. */ if (hash_block_size <= 1 || !cur_layer_size || (cur_layer_offset + cur_layer_size) > ctx->section_size || (i > 1 && (!parent_layer_size || \ (parent_layer_offset + parent_layer_size) > ctx->section_size))) { LOG_MSG("Invalid hierarchical parent/child layer!"); goto end; } /* Retrieve pointer to the current layer patch. */ cur_layer_patch = (!is_integrity_patch ? &(hierarchical_sha256_patch->hash_region_patch[i - 1]) : &(hierarchical_integrity_patch->hash_level_patch[i - 1])); /* Calculate required offsets and sizes. */ if (i > 1) { /* HierarchicalSha256 hash region with index 1 through 4, or HierarchicalIntegrity verification level with index 1 through 5. */ cur_layer_read_start_offset = (cur_layer_offset + ALIGN_DOWN(cur_data_offset, hash_block_size)); cur_layer_read_end_offset = (cur_layer_offset + ALIGN_UP(cur_data_offset + cur_data_size, hash_block_size)); cur_layer_read_size = (cur_layer_read_end_offset - cur_layer_read_start_offset); parent_layer_read_start_offset = ((cur_data_offset / hash_block_size) * SHA256_HASH_SIZE); parent_layer_read_size = ((cur_layer_read_size / hash_block_size) * SHA256_HASH_SIZE); } else { /* HierarchicalSha256 master hash region, or HierarchicalIntegrity master verification level. Both with index 0. */ /* The master hash is calculated over the whole layer and saved to the HashData block from the NCA FS section header. */ cur_layer_read_start_offset = cur_layer_offset; cur_layer_read_end_offset = (cur_layer_offset + cur_layer_size); cur_layer_read_size = cur_layer_size; } cur_layer_read_patch_offset = (cur_data_offset - ALIGN_DOWN(cur_data_offset, hash_block_size)); /* Allocate memory for our current layer block. */ cur_layer_block = calloc(cur_layer_read_size, sizeof(u8)); if (!cur_layer_block) { LOG_MSG("Unable to allocate 0x%lX bytes for hierarchical layer #%u data block! (current).", cur_layer_read_size, i - 1); goto end; } /* Adjust current layer read size to avoid read errors (if needed). */ if (cur_layer_read_end_offset > (cur_layer_offset + cur_layer_size)) { cur_layer_read_end_offset = (cur_layer_offset + cur_layer_size); cur_layer_read_size = (cur_layer_read_end_offset - cur_layer_read_start_offset); } /* Read current layer block. */ if (!_ncaReadFsSection(ctx, cur_layer_block, cur_layer_read_size, cur_layer_read_start_offset)) { LOG_MSG("Failed to read 0x%lX bytes long hierarchical layer #%u data block from offset 0x%lX! (current).", cur_layer_read_size, i - 1, cur_layer_read_start_offset); goto end; } /* Replace current layer block data. */ memcpy(cur_layer_block + cur_layer_read_patch_offset, (i == layer_count ? data : cur_data), cur_data_size); /* Recalculate hashes. */ if (i > 1) { /* Allocate memory for our parent layer block. */ parent_layer_block = calloc(parent_layer_read_size, sizeof(u8)); if (!parent_layer_block) { LOG_MSG("Unable to allocate 0x%lX bytes for hierarchical layer #%u data block! (parent).", parent_layer_read_size, i - 2); goto end; } /* Read parent layer block. */ if (!_ncaReadFsSection(ctx, parent_layer_block, parent_layer_read_size, parent_layer_offset + parent_layer_read_start_offset)) { LOG_MSG("Failed to read 0x%lX bytes long hierarchical layer #%u data block from offset 0x%lX! (parent).", parent_layer_read_size, i - 2, parent_layer_read_start_offset); goto end; } /* HierarchicalSha256: size is truncated for blocks smaller than the hash block size. */ /* HierarchicalIntegrity: size *isn't* truncated for blocks smaller than the hash block size, so we just keep using the same hash block size throughout the loop. */ /* For these specific cases, the rest of the block should be filled with zeroes (already taken care of by using calloc()). */ for(u64 j = 0, k = 0; j < cur_layer_read_size; j += hash_block_size, k++) { if (!is_integrity_patch && hash_block_size > (cur_layer_read_size - j)) hash_block_size = (cur_layer_read_size - j); ncaCalculateLayerHash(parent_layer_block + (k * SHA256_HASH_SIZE), cur_layer_block + j, hash_block_size, use_sha3); } } else { /* Recalculate master hash from the HashData area. */ u8 *master_hash = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.master_hash : ctx->header.hash_data.integrity_meta_info.master_hash); ncaCalculateLayerHash(master_hash, cur_layer_block, cur_layer_read_size, use_sha3); } if (!ctx->skip_hash_layer_crypto || i == layer_count) { /* Reencrypt current layer block (if needed). */ cur_layer_patch->data = ncaGenerateEncryptedFsSectionBlock(ctx, cur_layer_block + cur_layer_read_patch_offset, cur_data_size, cur_layer_offset + cur_data_offset, \ &(cur_layer_patch->size), &(cur_layer_patch->offset)); if (!cur_layer_patch->data) { LOG_MSG("Failed to generate encrypted 0x%lX bytes long hierarchical layer #%u data block!", cur_data_size, i - 1); goto end; } } else { /* Allocate memory for the data block and copy its information. */ cur_layer_patch->data = malloc(cur_data_size); if (!cur_layer_patch->data) { LOG_MSG("Failed to allocate 0x%lX bytes long buffer for hierarchical layer #%u data block!", cur_data_size, i - 1); goto end; } memcpy(cur_layer_patch->data, cur_layer_block + cur_layer_read_patch_offset, cur_data_size); cur_layer_patch->size = cur_data_size; cur_layer_patch->offset = (ctx->section_offset + cur_layer_offset + cur_data_offset); } /* Free current layer block. */ free(cur_layer_block); cur_layer_block = NULL; if (i > 1) { /* Free previous layer block (if needed). */ if (cur_data) free(cur_data); /* Prepare data for the next layer. */ cur_data = parent_layer_block; cur_data_offset = parent_layer_read_start_offset; cur_data_size = parent_layer_read_size; parent_layer_block = NULL; } } /* Recalculate FS header hash. */ sha256CalculateHash(nca_ctx->header.fs_header_hash[ctx->section_idx].hash, &(ctx->header), sizeof(NcaFsHeader)); /* Copy content ID. */ memcpy(!is_integrity_patch ? &(hierarchical_sha256_patch->content_id) : &(hierarchical_integrity_patch->content_id), &(nca_ctx->content_id), sizeof(NcmContentId)); /* Set hash region count (if needed). */ if (!is_integrity_patch) hierarchical_sha256_patch->hash_region_count = layer_count; success = true; end: if (cur_layer_block) free(cur_layer_block); if (parent_layer_block) free(parent_layer_block); if (!success && out) { if (!is_integrity_patch) { ncaFreeHierarchicalSha256Patch(hierarchical_sha256_patch); } else { ncaFreeHierarchicalIntegrityPatch(hierarchical_integrity_patch); } } return success; } static bool ncaWritePatchToMemoryBuffer(NcaContext *ctx, const void *patch, u64 patch_size, u64 patch_offset, void *buf, u64 buf_size, u64 buf_offset) { /* Return right away if we're dealing with invalid parameters, or if the buffer data is not part of the range covered by the patch (last two conditions). */ if (!ctx || !patch || !patch_size || (patch_offset + patch_size) > ctx->content_size || (buf_offset + buf_size) <= patch_offset || \ (patch_offset + patch_size) <= buf_offset) return false; /* Overwrite buffer data using patch data. */ u64 patch_block_offset = (patch_offset < buf_offset ? (buf_offset - patch_offset) : 0); u64 patch_remaining_size = (patch_size - patch_block_offset); u64 buf_block_offset = (buf_offset < patch_offset ? (patch_offset - buf_offset) : 0); u64 buf_remaining_size = (buf_size - buf_block_offset); u64 buf_block_size = (buf_remaining_size < patch_remaining_size ? buf_remaining_size : patch_remaining_size); memcpy((u8*)buf + buf_block_offset, (const u8*)patch + patch_block_offset, buf_block_size); LOG_MSG("Overwrote 0x%lX bytes block at offset 0x%lX from raw %s NCA \"%s\" buffer (size 0x%lX, NCA offset 0x%lX).", buf_block_size, buf_block_offset, titleGetNcmContentTypeName(ctx->content_type), \ ctx->content_id_str, buf_size, buf_offset); return ((patch_block_offset + buf_block_size) == patch_size); } /// Returns a pointer to a dynamically allocated buffer used to encrypt the input plaintext data, based on the encryption type used by the input NCA FS section, as well as its offset and size. /// Input offset must be relative to the start of the NCA FS section. /// Output size and offset are guaranteed to be aligned to the AES sector size used by the encryption type from the FS section. /// Output offset is relative to the start of the NCA content file, making it easier to use the output encrypted block to seamlessly replace data while dumping a NCA. /// This function doesn't support Patch RomFS sections, nor sections with Sparse and/or Compressed storage. static void *ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset) { u8 *out = NULL; bool success = false; if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || ctx->has_sparse_layer || ctx->has_compression_layer || !ctx->nca_ctx || ctx->section_idx >= NCA_FS_HEADER_COUNT || \ ctx->section_offset < sizeof(NcaHeader) || ctx->hash_type <= NcaHashType_None || ctx->hash_type == NcaHashType_AutoSha3 || ctx->hash_type > NcaHashType_HierarchicalIntegritySha3 || \ ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type == NcaEncryptionType_AesCtrEx || ctx->encryption_type >= NcaEncryptionType_AesCtrExSkipLayerHash || \ ctx->section_type >= NcaFsSectionType_Invalid || !data || !data_size || (data_offset + data_size) > ctx->section_size || !out_block_size || !out_block_offset) { LOG_MSG("Invalid NCA FS section header parameters!"); goto end; } size_t crypt_res = 0; u64 sector_num = 0; NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + data_offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 plain_chunk_offset = 0; if (!*(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ (nca_ctx->format_version != NcaVersion_Nca0 && nca_ctx->format_version != NcaVersion_Nca2 && nca_ctx->format_version != NcaVersion_Nca3) || (content_offset + data_size) > nca_ctx->content_size) { LOG_MSG("Invalid NCA header parameters!"); goto end; } /* Optimization for blocks from plaintext FS sections or blocks that are aligned to the AES-CTR / AES-XTS sector size. */ if (ctx->encryption_type == NcaEncryptionType_None || \ (ctx->encryption_type == NcaEncryptionType_AesXts && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(data_size % NCA_AES_XTS_SECTOR_SIZE)) || \ ((ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash) && !(content_offset % AES_BLOCK_SIZE) && !(data_size % AES_BLOCK_SIZE))) { /* Allocate memory. */ out = malloc(data_size); if (!out) { LOG_MSG("Unable to allocate 0x%lX bytes buffer! (aligned).", data_size); goto end; } /* Copy data. */ memcpy(out, data, data_size); /* Encrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? data_offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, data_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != data_size) { LOG_MSG("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", data_size, content_offset, nca_ctx->content_id_str, ctx->section_idx); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash) { aes128CtrUpdatePartialCtr(ctx->ctr, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, data_size); } *out_block_size = data_size; *out_block_offset = content_offset; success = true; goto end; } /* Calculate block offsets and size. */ block_start_offset = ALIGN_DOWN(data_offset, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(data_offset + data_size, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); plain_chunk_offset = (data_offset - block_start_offset); content_offset = (ctx->section_offset + block_start_offset); /* Allocate memory. */ out = malloc(block_size); if (!out) { LOG_MSG("Unable to allocate 0x%lX bytes buffer! (unaligned).", block_size); goto end; } /* Read decrypted data using aligned offset and size. */ if (!_ncaReadFsSection(ctx, out, block_size, block_start_offset)) { LOG_MSG("Failed to read decrypted NCA \"%s\" FS section #%u data block!", nca_ctx->content_id_str, ctx->section_idx); goto end; } /* Replace plaintext data. */ memcpy(out + plain_chunk_offset, data, data_size); /* Reencrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? block_start_offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, block_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != block_size) { LOG_MSG("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", block_size, content_offset, nca_ctx->content_id_str, ctx->section_idx); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrSkipLayerHash) { aes128CtrUpdatePartialCtr(ctx->ctr, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, block_size); } *out_block_size = block_size; *out_block_offset = content_offset; success = true; end: if (!success && out) { free(out); out = NULL; } return out; }