mirror of
https://github.com/DarkMatterCore/nxdumptool.git
synced 2024-11-10 20:46:41 +00:00
1189 lines
50 KiB
C
1189 lines
50 KiB
C
/*
|
|
* Copyright (c) 2020 DarkMatterCore
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "nca.h"
|
|
#include "keys.h"
|
|
#include "rsa.h"
|
|
#include "gamecard.h"
|
|
#include "utils.h"
|
|
|
|
#define NCA_CRYPTO_BUFFER_SIZE 0x800000 /* 8 MiB */
|
|
|
|
/* Global variables. */
|
|
|
|
static u8 *g_ncaCryptoBuffer = NULL;
|
|
static Mutex g_ncaCryptoBufferMutex = 0;
|
|
|
|
static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = {
|
|
0x9A, 0xBB, 0xD2, 0x11, 0x86, 0x00, 0x21, 0x9D, 0x7A, 0xDC, 0x5B, 0x43, 0x95, 0xF8, 0x4E, 0xFD,
|
|
0xFF, 0x6B, 0x25, 0xEF, 0x9F, 0x96, 0x85, 0x28, 0x18, 0x9E, 0x76, 0xB0, 0x92, 0xF0, 0x6A, 0xCB
|
|
};
|
|
|
|
/* Function prototypes. */
|
|
|
|
static size_t aes128XtsNintendoCrypt(Aes128XtsContext *ctx, void *dst, const void *src, size_t size, u64 sector, size_t sector_size, bool encrypt); /* Not used anywhere else */
|
|
|
|
static bool ncaDecryptHeader(NcaContext *ctx);
|
|
static bool ncaDecryptKeyArea(NcaContext *ctx);
|
|
|
|
NX_INLINE bool ncaCheckIfVersion0KeyAreaIsEncrypted(NcaContext *ctx);
|
|
NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx);
|
|
NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx);
|
|
|
|
NX_INLINE void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset);
|
|
NX_INLINE void ncaUpdateAesCtrIv(u8 *ctr, u64 offset);
|
|
NX_INLINE void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset);
|
|
|
|
static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, bool lock);
|
|
static void *_ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset, bool lock);
|
|
|
|
bool ncaAllocateCryptoBuffer(void)
|
|
{
|
|
mutexLock(&g_ncaCryptoBufferMutex);
|
|
if (!g_ncaCryptoBuffer) g_ncaCryptoBuffer = malloc(NCA_CRYPTO_BUFFER_SIZE);
|
|
bool ret = (g_ncaCryptoBuffer != NULL);
|
|
mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
return ret;
|
|
}
|
|
|
|
void ncaFreeCryptoBuffer(void)
|
|
{
|
|
mutexLock(&g_ncaCryptoBufferMutex);
|
|
if (g_ncaCryptoBuffer)
|
|
{
|
|
free(g_ncaCryptoBuffer);
|
|
g_ncaCryptoBuffer = NULL;
|
|
}
|
|
mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
}
|
|
|
|
bool ncaEncryptKeyArea(NcaContext *ctx)
|
|
{
|
|
if (!ctx)
|
|
{
|
|
LOGFILE("Invalid NCA context!");
|
|
return false;
|
|
}
|
|
|
|
u8 key_count;
|
|
const u8 *kaek = NULL;
|
|
Aes128Context key_area_ctx = {0};
|
|
|
|
/* Check if we're dealing with a NCA0 with a plain text key area */
|
|
if (ctx->format_version == NcaVersion_Nca0 && !ncaCheckIfVersion0KeyAreaIsEncrypted(ctx))
|
|
{
|
|
memcpy(ctx->header.encrypted_keys, ctx->decrypted_keys, 0x40);
|
|
return true;
|
|
}
|
|
|
|
kaek = keysGetKeyAreaEncryptionKey(ctx->key_generation, ctx->header.kaek_index);
|
|
if (!kaek)
|
|
{
|
|
LOGFILE("Unable to retrieve KAEK for key generation 0x%02X and KAEK index 0x%02X!", ctx->key_generation, ctx->header.kaek_index);
|
|
return false;
|
|
}
|
|
|
|
key_count = (ctx->format_version == NcaVersion_Nca0 ? 2 : 4);
|
|
|
|
aes128ContextCreate(&key_area_ctx, kaek, true);
|
|
for(u8 i = 0; i < key_count; i++) aes128EncryptBlock(&key_area_ctx, ctx->header.encrypted_keys[i].key, ctx->decrypted_keys[i].key);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ncaEncryptHeader(NcaContext *ctx)
|
|
{
|
|
if (!ctx || !strlen(ctx->content_id_str))
|
|
{
|
|
LOGFILE("Invalid NCA context!");
|
|
return false;
|
|
}
|
|
|
|
u32 i;
|
|
size_t crypt_res = 0;
|
|
u64 fs_header_offset = 0;
|
|
const u8 *header_key = NULL;
|
|
Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0};
|
|
|
|
header_key = keysGetNcaHeaderKey();
|
|
|
|
aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, true);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != NCA_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error encrypting partial NCA \"%s\" header!", ctx->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
switch(ctx->format_version)
|
|
{
|
|
case NcaVersion_Nca3:
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, ctx->header.fs_headers, ctx->header.fs_headers, NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH, 2, NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != (NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH))
|
|
{
|
|
LOGFILE("Error encrypting NCA3 \"%s\" FS section headers!", ctx->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
case NcaVersion_Nca2:
|
|
for(i = 0; i < NCA_FS_HEADER_COUNT; i++)
|
|
{
|
|
if (!ctx->header.fs_entries[i].enable_entry) continue;
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != NCA_FS_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error encrypting NCA2 \"%s\" FS section header #%u!", ctx->content_id_str, i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
case NcaVersion_Nca0:
|
|
/* NCA0 FS section headers will be encrypted in-place, but they need to be written to their proper offsets */
|
|
aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_keys[0].key, ctx->decrypted_keys[1].key, true);
|
|
|
|
for(i = 0; i < NCA_FS_HEADER_COUNT; i++)
|
|
{
|
|
if (!ctx->header.fs_entries[i].enable_entry) continue;
|
|
|
|
fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, \
|
|
NCA_NCA0_FS_HEADER_AES_XTS_SECTOR(fs_header_offset), NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != NCA_FS_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error decrypting NCA0 \"%s\" FS section header #%u!", ctx->content_id_str, i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
LOGFILE("Invalid NCA \"%s\" format version! (0x%02X)", ctx->content_id_str, ctx->format_version);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ncaInitializeContext(NcaContext *out, u8 storage_id, NcmContentStorage *ncm_storage, u8 hfs_partition_type, const NcmPackagedContentInfo *content_info, Ticket *tik)
|
|
{
|
|
if (!out || !tik || (storage_id != NcmStorageId_GameCard && !ncm_storage) || (storage_id == NcmStorageId_GameCard && hfs_partition_type > GameCardHashFileSystemPartitionType_Secure) || \
|
|
!content_info || content_info->info.content_type > NcmContentType_DeltaFragment)
|
|
{
|
|
LOGFILE("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
/* Fill NCA context */
|
|
out->storage_id = storage_id;
|
|
out->ncm_storage = (out->storage_id != NcmStorageId_GameCard ? ncm_storage : NULL);
|
|
|
|
memcpy(&(out->content_id), &(content_info->info.content_id), sizeof(NcmContentId));
|
|
utilsGenerateHexStringFromData(out->content_id_str, sizeof(out->content_id_str), out->content_id.c, sizeof(out->content_id.c));
|
|
|
|
memcpy(out->hash, content_info->hash, SHA256_HASH_SIZE);
|
|
utilsGenerateHexStringFromData(out->hash_str, sizeof(out->hash_str), out->hash, sizeof(out->hash));
|
|
|
|
out->content_type = content_info->info.content_type;
|
|
out->id_offset = content_info->info.id_offset;
|
|
|
|
ncaConvertNcmContentSizeToU64(content_info->info.size, &(out->content_size));
|
|
if (out->content_size < NCA_FULL_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Invalid size for NCA \"%s\"!", out->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
out->rights_id_available = out->dirty_header = false;
|
|
|
|
if (out->storage_id == NcmStorageId_GameCard)
|
|
{
|
|
/* Retrieve gamecard NCA offset */
|
|
char nca_filename[0x30] = {0};
|
|
sprintf(nca_filename, "%s.%s", out->content_id_str, out->content_type == NcmContentType_Meta ? "cnmt.nca" : "nca");
|
|
|
|
if (!gamecardGetEntryInfoFromHashFileSystemPartitionByName(hfs_partition_type, nca_filename, &(out->gamecard_offset), NULL))
|
|
{
|
|
LOGFILE("Error retrieving offset for \"%s\" entry in secure hash FS partition!", nca_filename);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Read NCA header */
|
|
if (!ncaReadContentFile(out, &(out->header), sizeof(NcaHeader), 0))
|
|
{
|
|
LOGFILE("Failed to read NCA \"%s\" header!", out->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
/* Decrypt NCA header */
|
|
if (!ncaDecryptHeader(out))
|
|
{
|
|
LOGFILE("Failed to decrypt NCA \"%s\" header!", out->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
if (out->header.content_size != out->content_size)
|
|
{
|
|
LOGFILE("Content size mismatch for NCA \"%s\"! (0x%lX != 0x%lX)", out->content_id_str, out->header.content_size, out->content_size);
|
|
return false;
|
|
}
|
|
|
|
/* Fill additional NCA context info */
|
|
out->key_generation = ncaGetKeyGenerationValue(out);
|
|
out->rights_id_available = ncaCheckRightsIdAvailability(out);
|
|
|
|
if (out->rights_id_available)
|
|
{
|
|
/* Retrieve ticket */
|
|
/* This will return true if it has already been retrieved */
|
|
if (!tikRetrieveTicketByRightsId(tik, &(out->header.rights_id), out->storage_id == NcmStorageId_GameCard))
|
|
{
|
|
LOGFILE("Error retrieving ticket for NCA \"%s\"!", out->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
/* Copy decrypted titlekey */
|
|
memcpy(out->titlekey, tik->dec_titlekey, 0x10);
|
|
} else {
|
|
/* Decrypt key area */
|
|
if (out->format_version != NcaVersion_Nca0 && !ncaDecryptKeyArea(out))
|
|
{
|
|
LOGFILE("Error decrypting NCA key area!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Parse sections */
|
|
for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++)
|
|
{
|
|
if (!out->header.fs_entries[i].enable_entry) continue;
|
|
|
|
/* Fill section context */
|
|
out->fs_contexts[i].nca_ctx = out;
|
|
out->fs_contexts[i].section_num = i;
|
|
out->fs_contexts[i].section_offset = NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].start_block_offset);
|
|
out->fs_contexts[i].section_size = (NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].end_block_offset) - out->fs_contexts[i].section_offset);
|
|
out->fs_contexts[i].section_type = NcaFsSectionType_Invalid; /* Placeholder */
|
|
out->fs_contexts[i].header = &(out->header.fs_headers[i]);
|
|
|
|
memset(out->fs_contexts[i].ctr, 0, sizeof(out->fs_contexts[i].ctr));
|
|
memset(&(out->fs_contexts[i].ctr_ctx), 0, sizeof(Aes128CtrContext));
|
|
memset(&(out->fs_contexts[i].xts_decrypt_ctx), 0, sizeof(Aes128XtsContext));
|
|
memset(&(out->fs_contexts[i].xts_encrypt_ctx), 0, sizeof(Aes128XtsContext));
|
|
|
|
/* Determine encryption type */
|
|
out->fs_contexts[i].encryption_type = (out->format_version == NcaVersion_Nca0 ? NcaEncryptionType_Nca0 : out->header.fs_headers[i].encryption_type);
|
|
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_Auto)
|
|
{
|
|
switch(out->fs_contexts[i].section_num)
|
|
{
|
|
case 0: /* ExeFS Partition FS */
|
|
case 1: /* RomFS */
|
|
out->fs_contexts[i].encryption_type = NcaEncryptionType_AesCtr;
|
|
break;
|
|
case 2: /* Logo Partition FS */
|
|
out->fs_contexts[i].encryption_type = NcaEncryptionType_None;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we're dealing with an invalid encryption type value */
|
|
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_Auto || out->fs_contexts[i].encryption_type > NcaEncryptionType_Nca0) continue;
|
|
|
|
/* Determine FS section type */
|
|
if (out->fs_contexts[i].header->fs_type == NcaFsType_PartitionFs && out->fs_contexts[i].header->hash_type == NcaHashType_HierarchicalSha256)
|
|
{
|
|
out->fs_contexts[i].section_type = NcaFsSectionType_PartitionFs;
|
|
} else
|
|
if (out->fs_contexts[i].header->fs_type == NcaFsType_RomFs && out->fs_contexts[i].header->hash_type == NcaHashType_HierarchicalIntegrity)
|
|
{
|
|
out->fs_contexts[i].section_type = (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtrEx ? NcaFsSectionType_PatchRomFs : NcaFsSectionType_RomFs);
|
|
} else
|
|
if (out->fs_contexts[i].header->fs_type == NcaFsType_RomFs && out->fs_contexts[i].header->hash_type == NcaHashType_HierarchicalSha256 && out->format_version == NcaVersion_Nca0)
|
|
{
|
|
out->fs_contexts[i].section_type = NcaFsSectionType_Nca0RomFs;
|
|
}
|
|
|
|
/* Check if we're dealing with an invalid section type value */
|
|
if (out->fs_contexts[i].section_type >= NcaFsSectionType_Invalid) continue;
|
|
|
|
/* Initialize crypto related fields */
|
|
if (out->fs_contexts[i].encryption_type > NcaEncryptionType_None && out->fs_contexts[i].encryption_type <= NcaEncryptionType_Nca0)
|
|
{
|
|
/* Initialize section CTR */
|
|
ncaInitializeAesCtrIv(out->fs_contexts[i].ctr, out->fs_contexts[i].header->section_ctr, out->fs_contexts[i].section_offset);
|
|
|
|
/* Initialize AES context */
|
|
if (out->rights_id_available)
|
|
{
|
|
aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->titlekey, out->fs_contexts[i].ctr);
|
|
} else {
|
|
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtr || out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtrEx)
|
|
{
|
|
aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->decrypted_keys[2].key, out->fs_contexts[i].ctr);
|
|
} else
|
|
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesXts || out->fs_contexts[i].encryption_type == NcaEncryptionType_Nca0)
|
|
{
|
|
/* We need to create two different contexts: one for decryption and another one for encryption */
|
|
aes128XtsContextCreate(&(out->fs_contexts[i].xts_decrypt_ctx), out->decrypted_keys[0].key, out->decrypted_keys[1].key, false);
|
|
aes128XtsContextCreate(&(out->fs_contexts[i].xts_encrypt_ctx), out->decrypted_keys[0].key, out->decrypted_keys[1].key, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ncaReadContentFile(NcaContext *ctx, void *out, u64 read_size, u64 offset)
|
|
{
|
|
if (!ctx || !strlen(ctx->content_id_str) || (ctx->storage_id != NcmStorageId_GameCard && !ctx->ncm_storage) || (ctx->storage_id == NcmStorageId_GameCard && !ctx->gamecard_offset) || !out || \
|
|
!read_size || offset >= ctx->content_size || (offset + read_size) > ctx->content_size)
|
|
{
|
|
LOGFILE("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
Result rc = 0;
|
|
bool ret = false;
|
|
|
|
if (ctx->storage_id != NcmStorageId_GameCard)
|
|
{
|
|
/* Retrieve NCA data normally */
|
|
/* This strips NAX0 crypto from SD card NCAs (not used on eMMC NCAs) */
|
|
rc = ncmContentStorageReadContentIdFile(ctx->ncm_storage, out, read_size, &(ctx->content_id), offset);
|
|
ret = R_SUCCEEDED(rc);
|
|
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (0x%08X) (ncm)", read_size, offset, ctx->content_id_str, rc);
|
|
} else {
|
|
/* Retrieve NCA data using raw gamecard reads */
|
|
/* Fixes NCA read issues with gamecards under HOS < 4.0.0 when using ncmContentStorageReadContentIdFile() */
|
|
ret = gamecardReadStorage(out, read_size, ctx->gamecard_offset + offset);
|
|
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (gamecard)", read_size, offset, ctx->content_id_str);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset)
|
|
{
|
|
return _ncaReadFsSection(ctx, out, read_size, offset, true);
|
|
}
|
|
|
|
void *ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset)
|
|
{
|
|
return _ncaGenerateEncryptedFsSectionBlock(ctx, data, data_size, data_offset, out_block_size, out_block_offset, true);
|
|
}
|
|
|
|
bool ncaGenerateHierarchicalSha256Patch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalSha256Patch *out)
|
|
{
|
|
mutexLock(&g_ncaCryptoBufferMutex);
|
|
|
|
NcaContext *nca_ctx = NULL;
|
|
|
|
u64 hash_block_size = 0;
|
|
u64 hash_data_layer_offset = 0, hash_data_layer_size = 0;
|
|
u64 hash_target_layer_offset = 0, hash_target_layer_size = 0;
|
|
u8 *hash_data_layer = NULL, *hash_target_block = NULL;
|
|
|
|
bool success = false;
|
|
|
|
if (!ctx || !(nca_ctx = (NcaContext*)ctx->nca_ctx) || !ctx->header || ctx->header->hash_type != NcaHashType_HierarchicalSha256 || !data || !data_size || \
|
|
!(hash_block_size = ctx->header->hash_info.hierarchical_sha256.hash_block_size) || !(hash_data_layer_size = ctx->header->hash_info.hierarchical_sha256.hash_data_layer_info.size) || \
|
|
!(hash_target_layer_size = ctx->header->hash_info.hierarchical_sha256.hash_target_layer_info.size) || data_offset >= hash_target_layer_size || \
|
|
(data_offset + data_size) > hash_target_layer_size || !out)
|
|
{
|
|
LOGFILE("Invalid parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Calculate required offsets and sizes */
|
|
hash_data_layer_offset = ctx->header->hash_info.hierarchical_sha256.hash_data_layer_info.offset;
|
|
hash_target_layer_offset = ctx->header->hash_info.hierarchical_sha256.hash_target_layer_info.offset;
|
|
|
|
u64 hash_data_start_offset = ((data_offset / hash_block_size) * SHA256_HASH_SIZE);
|
|
u64 hash_data_end_offset = (((data_offset + data_size) / hash_block_size) * SHA256_HASH_SIZE);
|
|
u64 hash_data_size = (hash_data_end_offset != hash_data_start_offset ? (hash_data_end_offset - hash_data_start_offset) : SHA256_HASH_SIZE);
|
|
|
|
u64 hash_target_start_offset = (hash_target_layer_offset + ALIGN_DOWN(data_offset, hash_block_size));
|
|
u64 hash_target_end_offset = (hash_target_layer_offset + ALIGN_UP(data_offset + data_size, hash_block_size));
|
|
if (hash_target_end_offset > (hash_target_layer_offset + hash_target_layer_size)) hash_target_end_offset = (hash_target_layer_offset + hash_target_layer_size);
|
|
u64 hash_target_size = (hash_target_end_offset - hash_target_start_offset);
|
|
|
|
u64 hash_target_data_offset = (data_offset - ALIGN_DOWN(data_offset, hash_block_size));
|
|
|
|
/* Allocate memory for the full hash data layer */
|
|
hash_data_layer = malloc(hash_data_layer_size);
|
|
if (!hash_data_layer)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes buffer for the full HierarchicalSha256 hash data layer!", hash_data_layer_size);
|
|
goto exit;
|
|
}
|
|
|
|
/* Read full hash data layer */
|
|
if (!_ncaReadFsSection(ctx, hash_data_layer, hash_data_layer_size, hash_data_layer_offset, false))
|
|
{
|
|
LOGFILE("Failed to read full HierarchicalSha256 hash data layer!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Allocate memory for the modified hash target layer block */
|
|
hash_target_block = malloc(hash_target_size);
|
|
if (!hash_target_block)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes buffer for the modified HierarchicalSha256 hash target layer block!", hash_target_size);
|
|
goto exit;
|
|
}
|
|
|
|
/* Read hash target layer block */
|
|
if (!_ncaReadFsSection(ctx, hash_target_block, hash_target_size, hash_target_start_offset, false))
|
|
{
|
|
LOGFILE("Failed to read HierarchicalSha256 hash target layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Replace data */
|
|
memcpy(hash_target_block + hash_target_data_offset, data, data_size);
|
|
|
|
/* Recalculate hashes */
|
|
for(u64 i = 0, j = 0; i < hash_target_size; i += hash_block_size, j++)
|
|
{
|
|
if (hash_block_size > (hash_target_size - i)) hash_block_size = (hash_target_size - i);
|
|
sha256CalculateHash(hash_data_layer + hash_data_start_offset + (j * SHA256_HASH_SIZE), hash_target_block + i, hash_block_size);
|
|
}
|
|
|
|
/* Reencrypt modified hash data layer block */
|
|
out->hash_data_layer_patch.data = _ncaGenerateEncryptedFsSectionBlock(ctx, hash_data_layer + hash_data_start_offset, hash_data_size, hash_data_layer_offset + hash_data_start_offset, \
|
|
&(out->hash_data_layer_patch.size), &(out->hash_data_layer_patch.offset), false);
|
|
if (!out->hash_data_layer_patch.data)
|
|
{
|
|
LOGFILE("Failed to generate encrypted HierarchicalSha256 hash data layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Reencrypt hash target layer block */
|
|
out->hash_target_layer_patch.data = _ncaGenerateEncryptedFsSectionBlock(ctx, hash_target_block + hash_target_data_offset, data_size, hash_target_layer_offset + data_offset, \
|
|
&(out->hash_target_layer_patch.size), &(out->hash_target_layer_patch.offset), false);
|
|
if (!out->hash_target_layer_patch.data)
|
|
{
|
|
LOGFILE("Failed to generate encrypted HierarchicalSha256 hash target layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Recalculate master hash from hash info block */
|
|
sha256CalculateHash(ctx->header->hash_info.hierarchical_sha256.master_hash, hash_data_layer, hash_data_layer_size);
|
|
|
|
/* Recalculate FS header hash */
|
|
sha256CalculateHash(nca_ctx->header.fs_hashes[ctx->section_num].hash, ctx->header, sizeof(NcaFsHeader));
|
|
|
|
/* Enable the 'dirty_header' flag */
|
|
nca_ctx->dirty_header = true;
|
|
|
|
success = true;
|
|
|
|
exit:
|
|
if (hash_target_block) free(hash_target_block);
|
|
|
|
if (hash_data_layer) free(hash_data_layer);
|
|
|
|
if (!success) ncaFreeHierarchicalSha256Patch(out);
|
|
|
|
mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool ncaGenerateHierarchicalIntegrityPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalIntegrityPatch *out)
|
|
{
|
|
mutexLock(&g_ncaCryptoBufferMutex);
|
|
|
|
NcaContext *nca_ctx = NULL;
|
|
bool success = false;
|
|
|
|
u8 *cur_data = NULL;
|
|
u64 cur_data_offset = data_offset;
|
|
u64 cur_data_size = data_size;
|
|
|
|
u8 *hash_data_block = NULL, *hash_target_block = NULL;
|
|
|
|
if (!ctx || !(nca_ctx = (NcaContext*)ctx->nca_ctx) || !ctx->header || ctx->header->hash_type != NcaHashType_HierarchicalIntegrity || !data || !data_size || !out || \
|
|
data_offset >= ctx->header->hash_info.hierarchical_integrity.hash_target_layer_info.size || \
|
|
(data_offset + data_size) > ctx->header->hash_info.hierarchical_integrity.hash_target_layer_info.size)
|
|
{
|
|
LOGFILE("Invalid parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Process each IVFC layer */
|
|
for(u8 i = (NCA_IVFC_HASH_DATA_LAYER_COUNT + 1); i > 0; i--)
|
|
{
|
|
NcaHierarchicalIntegrityLayerInfo *cur_layer_info = (i > NCA_IVFC_HASH_DATA_LAYER_COUNT ? &(ctx->header->hash_info.hierarchical_integrity.hash_target_layer_info) : \
|
|
&(ctx->header->hash_info.hierarchical_integrity.hash_data_layer_info[i - 1]));
|
|
|
|
NcaHierarchicalIntegrityLayerInfo *parent_layer_info = (i > 1 ? &(ctx->header->hash_info.hierarchical_integrity.hash_data_layer_info[i - 2]) : NULL);
|
|
|
|
NcaHashInfoLayerPatch *cur_layer_patch = (i > NCA_IVFC_HASH_DATA_LAYER_COUNT ? &(out->hash_target_layer_patch) : &(out->hash_data_layer_patch[i - 1]));
|
|
|
|
if (!cur_layer_info->size || !cur_layer_info->block_size || (parent_layer_info && (!parent_layer_info->size || !parent_layer_info->block_size)))
|
|
{
|
|
LOGFILE("Invalid HierarchicalIntegrity parent/child layer!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Calculate required offsets and sizes */
|
|
u64 hash_block_size = NCA_IVFC_BLOCK_SIZE(cur_layer_info->block_size);
|
|
|
|
u64 hash_data_layer_offset = 0;
|
|
u64 hash_data_start_offset = 0, hash_data_end_offset = 0, hash_data_size = 0;
|
|
|
|
u64 hash_target_layer_offset = cur_layer_info->offset, hash_target_layer_size = cur_layer_info->size;
|
|
u64 hash_target_start_offset = 0, hash_target_end_offset = 0, hash_target_size = 0, hash_target_data_offset = 0;
|
|
|
|
if (parent_layer_info)
|
|
{
|
|
/* HierarchicalIntegrity layer from L1 to L5 */
|
|
hash_data_layer_offset = parent_layer_info->offset;
|
|
|
|
hash_data_start_offset = ((cur_data_offset / hash_block_size) * SHA256_HASH_SIZE);
|
|
hash_data_end_offset = (((cur_data_offset + cur_data_size) / hash_block_size) * SHA256_HASH_SIZE);
|
|
hash_data_size = (hash_data_end_offset != hash_data_start_offset ? (hash_data_end_offset - hash_data_start_offset) : SHA256_HASH_SIZE);
|
|
|
|
hash_target_start_offset = (hash_target_layer_offset + ALIGN_DOWN(cur_data_offset, hash_block_size));
|
|
hash_target_end_offset = (hash_target_layer_offset + ALIGN_UP(cur_data_offset + cur_data_size, hash_block_size));
|
|
hash_target_size = (hash_target_end_offset - hash_target_start_offset);
|
|
} else {
|
|
/* HierarchicalIntegrity master layer */
|
|
/* The master hash is calculated over the whole layer and saved to the NCA FS header */
|
|
hash_target_start_offset = hash_target_layer_offset;
|
|
hash_target_end_offset = (hash_target_layer_offset + hash_target_layer_size);
|
|
hash_target_size = hash_target_layer_size;
|
|
}
|
|
|
|
hash_target_data_offset = (cur_data_offset - ALIGN_DOWN(cur_data_offset, hash_block_size));
|
|
|
|
/* Allocate memory for our hash target layer block */
|
|
hash_target_block = calloc(hash_target_size, sizeof(u8));
|
|
if (!hash_target_block)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes for the HierarchicalIntegrity hash target layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Adjust hash target layer end offset and size if needed to avoid read errors */
|
|
if (hash_target_end_offset > (hash_target_layer_offset + hash_target_layer_size))
|
|
{
|
|
hash_target_end_offset = (hash_target_layer_offset + hash_target_layer_size);
|
|
hash_target_size = (hash_target_end_offset - hash_target_start_offset);
|
|
}
|
|
|
|
/* Read hash target layer block */
|
|
if (!_ncaReadFsSection(ctx, hash_target_block, hash_target_size, hash_target_start_offset, false))
|
|
{
|
|
LOGFILE("Failed to read HierarchicalIntegrity hash target layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Replace hash target layer block data */
|
|
memcpy(hash_target_block + hash_target_data_offset, (i > NCA_IVFC_HASH_DATA_LAYER_COUNT ? data : cur_data), cur_data_size);
|
|
|
|
if (parent_layer_info)
|
|
{
|
|
/* Allocate memory for our hash data layer block */
|
|
hash_data_block = calloc(hash_data_size, sizeof(u8));
|
|
if (!hash_data_block)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes for the HierarchicalIntegrity hash data layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Read hash target layer block */
|
|
if (!_ncaReadFsSection(ctx, hash_data_block, hash_data_size, hash_data_layer_offset + hash_data_start_offset, false))
|
|
{
|
|
LOGFILE("Failed to read HierarchicalIntegrity hash data layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Recalculate hashes */
|
|
/* Size isn't truncated for blocks smaller than the hash block size, unlike HierarchicalSha256, so we just keep using the same hash block size throughout the loop */
|
|
/* For these specific cases, the rest of the block should be filled with zeroes (already taken care of by using calloc()) */
|
|
for(u64 i = 0, j = 0; i < hash_target_size; i += hash_block_size, j++) sha256CalculateHash(hash_data_block + (j * SHA256_HASH_SIZE), hash_target_block + i, hash_block_size);
|
|
} else {
|
|
/* Recalculate master hash from hash info block */
|
|
sha256CalculateHash(ctx->header->hash_info.hierarchical_integrity.master_hash, hash_target_block, hash_target_size);
|
|
}
|
|
|
|
/* Reencrypt hash target layer block */
|
|
cur_layer_patch->data = _ncaGenerateEncryptedFsSectionBlock(ctx, hash_target_block + hash_target_data_offset, cur_data_size, hash_target_layer_offset + cur_data_offset, \
|
|
&(cur_layer_patch->size), &(cur_layer_patch->offset), false);
|
|
if (!cur_layer_patch->data)
|
|
{
|
|
LOGFILE("Failed to generate encrypted HierarchicalIntegrity hash target layer block!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Free hash target layer block */
|
|
free(hash_target_block);
|
|
hash_target_block = NULL;
|
|
|
|
if (parent_layer_info)
|
|
{
|
|
/* Free previous layer data if necessary */
|
|
if (cur_data) free(cur_data);
|
|
|
|
/* Prepare data for the next target layer */
|
|
cur_data = hash_data_block;
|
|
cur_data_offset = hash_data_start_offset;
|
|
cur_data_size = hash_data_size;
|
|
hash_data_block = NULL;
|
|
}
|
|
}
|
|
|
|
/* Recalculate FS header hash */
|
|
sha256CalculateHash(nca_ctx->header.fs_hashes[ctx->section_num].hash, ctx->header, sizeof(NcaFsHeader));
|
|
|
|
/* Enable the 'dirty_header' flag */
|
|
nca_ctx->dirty_header = true;
|
|
|
|
success = true;
|
|
|
|
exit:
|
|
if (hash_data_block) free(hash_data_block);
|
|
|
|
if (hash_target_block) free(hash_target_block);
|
|
|
|
if (cur_data) free(cur_data);
|
|
|
|
if (!success) ncaFreeHierarchicalIntegrityPatch(out);
|
|
|
|
mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
|
|
return success;
|
|
}
|
|
|
|
static size_t aes128XtsNintendoCrypt(Aes128XtsContext *ctx, void *dst, const void *src, size_t size, u64 sector, size_t sector_size, bool encrypt)
|
|
{
|
|
if (!ctx || !dst || !src || !size || !sector_size || (size % sector_size) != 0)
|
|
{
|
|
LOGFILE("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
size_t i, crypt_res = 0;
|
|
u64 cur_sector = sector;
|
|
|
|
u8 *dst_u8 = (u8*)dst;
|
|
const u8 *src_u8 = (const u8*)src;
|
|
|
|
for(i = 0; i < size; i += sector_size, cur_sector++)
|
|
{
|
|
/* We have to force a sector reset on each new sector to actually enable Nintendo AES-XTS cipher tweak */
|
|
aes128XtsContextResetSector(ctx, cur_sector, true);
|
|
crypt_res = (encrypt ? aes128XtsEncrypt(ctx, dst_u8 + i, src_u8 + i, sector_size) : aes128XtsDecrypt(ctx, dst_u8 + i, src_u8 + i, sector_size));
|
|
if (crypt_res != sector_size) break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static bool ncaDecryptHeader(NcaContext *ctx)
|
|
{
|
|
if (!ctx || !strlen(ctx->content_id_str))
|
|
{
|
|
LOGFILE("Invalid NCA context!");
|
|
return false;
|
|
}
|
|
|
|
u32 i, magic = 0;
|
|
size_t crypt_res = 0;
|
|
u64 fs_header_offset = 0;
|
|
const u8 *header_key = NULL;
|
|
Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0};
|
|
|
|
header_key = keysGetNcaHeaderKey();
|
|
|
|
aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, false);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != NCA_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error decrypting partial NCA \"%s\" header!", ctx->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
magic = __builtin_bswap32(ctx->header.magic);
|
|
|
|
switch(magic)
|
|
{
|
|
case NCA_NCA3_MAGIC:
|
|
ctx->format_version = NcaVersion_Nca3;
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, ctx->header.fs_headers, ctx->header.fs_headers, NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH, 2, NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != (NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH))
|
|
{
|
|
LOGFILE("Error decrypting NCA3 \"%s\" FS section headers!", ctx->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
case NCA_NCA2_MAGIC:
|
|
ctx->format_version = NcaVersion_Nca2;
|
|
|
|
for(i = 0; i < NCA_FS_HEADER_COUNT; i++)
|
|
{
|
|
if (!ctx->header.fs_entries[i].enable_entry) continue;
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != NCA_FS_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error decrypting NCA2 \"%s\" FS section header #%u!", ctx->content_id_str, i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
case NCA_NCA0_MAGIC:
|
|
ctx->format_version = NcaVersion_Nca0;
|
|
|
|
/* We first need to decrypt the key area from the NCA0 header in order to access its FS section headers */
|
|
if (!ncaDecryptKeyArea(ctx))
|
|
{
|
|
LOGFILE("Error decrypting NCA0 \"%s\" key area!", ctx->content_id_str);
|
|
return false;
|
|
}
|
|
|
|
aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_keys[0].key, ctx->decrypted_keys[1].key, false);
|
|
|
|
for(i = 0; i < NCA_FS_HEADER_COUNT; i++)
|
|
{
|
|
if (!ctx->header.fs_entries[i].enable_entry) continue;
|
|
|
|
/* FS headers are not part of NCA0 headers */
|
|
fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset);
|
|
if (!ncaReadContentFile(ctx, &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, fs_header_offset))
|
|
{
|
|
LOGFILE("Failed to read NCA0 \"%s\" FS section header #%u at offset 0x%lX!", ctx->content_id_str, i, fs_header_offset);
|
|
return false;
|
|
}
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, \
|
|
NCA_NCA0_FS_HEADER_AES_XTS_SECTOR(fs_header_offset), NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != NCA_FS_HEADER_LENGTH)
|
|
{
|
|
LOGFILE("Error decrypting NCA0 \"%s\" FS section header #%u!", ctx->content_id_str, i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
LOGFILE("Invalid NCA \"%s\" magic word! Wrong header key? (0x%08X)", ctx->content_id_str, magic);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ncaDecryptKeyArea(NcaContext *ctx)
|
|
{
|
|
if (!ctx)
|
|
{
|
|
LOGFILE("Invalid NCA context!");
|
|
return false;
|
|
}
|
|
|
|
Result rc = 0;
|
|
const u8 *kek_src = NULL;
|
|
u8 key_count, tmp_kek[0x10] = {0};
|
|
|
|
/* Check if we're dealing with a NCA0 with a plain text key area */
|
|
if (ctx->format_version == NcaVersion_Nca0 && !ncaCheckIfVersion0KeyAreaIsEncrypted(ctx))
|
|
{
|
|
memcpy(ctx->decrypted_keys, ctx->header.encrypted_keys, 0x40);
|
|
return true;
|
|
}
|
|
|
|
kek_src = keysGetKeyAreaEncryptionKeySource(ctx->header.kaek_index);
|
|
if (!kek_src)
|
|
{
|
|
LOGFILE("Unable to retrieve KAEK source for index 0x%02X!", ctx->header.kaek_index);
|
|
return false;
|
|
}
|
|
|
|
rc = splCryptoGenerateAesKek(kek_src, ctx->key_generation, 0, tmp_kek);
|
|
if (R_FAILED(rc))
|
|
{
|
|
LOGFILE("splCryptoGenerateAesKek failed! (0x%08X)", rc);
|
|
return false;
|
|
}
|
|
|
|
key_count = (ctx->format_version == NcaVersion_Nca0 ? 2 : 4);
|
|
|
|
for(u8 i = 0; i < key_count; i++)
|
|
{
|
|
rc = splCryptoGenerateAesKey(tmp_kek, ctx->header.encrypted_keys[i].key, ctx->decrypted_keys[i].key);
|
|
if (R_FAILED(rc))
|
|
{
|
|
LOGFILE("splCryptoGenerateAesKey failed! (0x%08X)", rc);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
NX_INLINE bool ncaCheckIfVersion0KeyAreaIsEncrypted(NcaContext *ctx)
|
|
{
|
|
if (!ctx || ctx->format_version != NcaVersion_Nca0) return false;
|
|
|
|
u8 nca0_key_area_hash[SHA256_HASH_SIZE] = {0};
|
|
sha256CalculateHash(nca0_key_area_hash, ctx->header.encrypted_keys, 0x40);
|
|
if (!memcmp(nca0_key_area_hash, g_nca0KeyAreaHash, SHA256_HASH_SIZE)) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx)
|
|
{
|
|
if (!ctx) return 0;
|
|
return (ctx->header.key_generation > ctx->header.key_generation_old ? ctx->header.key_generation : ctx->header.key_generation_old);
|
|
}
|
|
|
|
NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx)
|
|
{
|
|
if (!ctx) return false;
|
|
|
|
bool rights_id_available = false;
|
|
|
|
for(u8 i = 0; i < 0x10; i++)
|
|
{
|
|
if (ctx->header.rights_id.c[i] != 0)
|
|
{
|
|
rights_id_available = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rights_id_available;
|
|
}
|
|
|
|
NX_INLINE void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset)
|
|
{
|
|
if (!out || !ctr) return;
|
|
|
|
offset >>= 4;
|
|
|
|
for(u8 i = 0; i < 8; i++)
|
|
{
|
|
out[i] = ctr[0x8 - i - 1];
|
|
out[0x10 - i - 1] = (u8)(offset & 0xFF);
|
|
offset >>= 8;
|
|
}
|
|
}
|
|
|
|
NX_INLINE void ncaUpdateAesCtrIv(u8 *ctr, u64 offset)
|
|
{
|
|
if (!ctr) return;
|
|
|
|
offset >>= 4;
|
|
|
|
for(u8 i = 0; i < 8; i++)
|
|
{
|
|
ctr[0x10 - i - 1] = (u8)(offset & 0xFF);
|
|
offset >>= 8;
|
|
}
|
|
}
|
|
|
|
NX_INLINE void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset)
|
|
{
|
|
if (!ctr) return;
|
|
|
|
offset >>= 4;
|
|
|
|
for(u8 i = 0; i < 8; i++)
|
|
{
|
|
ctr[0x10 - i - 1] = (u8)(offset & 0xFF);
|
|
offset >>= 8;
|
|
}
|
|
|
|
for(u8 i = 0; i < 4; i++)
|
|
{
|
|
ctr[0x8 - i - 1] = (u8)(ctr_val & 0xFF);
|
|
ctr_val >>= 8;
|
|
}
|
|
}
|
|
|
|
static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, bool lock)
|
|
{
|
|
if (lock) mutexLock(&g_ncaCryptoBufferMutex);
|
|
|
|
bool ret = false;
|
|
|
|
if (!g_ncaCryptoBuffer || !ctx || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < NCA_FULL_HEADER_LENGTH || ctx->section_type >= NcaFsSectionType_Invalid || \
|
|
ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type > NcaEncryptionType_Nca0 || !ctx->header || !out || !read_size || offset >= ctx->section_size || \
|
|
(offset + read_size) > ctx->section_size)
|
|
{
|
|
LOGFILE("Invalid NCA FS section header parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
size_t crypt_res = 0;
|
|
u64 sector_num = 0;
|
|
|
|
NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx;
|
|
u64 content_offset = (ctx->section_offset + offset);
|
|
|
|
u64 block_start_offset = 0, block_end_offset = 0, block_size = 0;
|
|
u64 data_start_offset = 0, chunk_size = 0, out_chunk_size = 0;
|
|
|
|
if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \
|
|
content_offset >= nca_ctx->content_size || (content_offset + read_size) > nca_ctx->content_size)
|
|
{
|
|
LOGFILE("Invalid NCA header parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Optimization for reads from plaintext FS sections or reads that are aligned to the AES-CTR / AES-XTS sector size */
|
|
if (ctx->encryption_type == NcaEncryptionType_None || \
|
|
((ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(read_size % NCA_AES_XTS_SECTOR_SIZE)) || \
|
|
((ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx) && !(content_offset % AES_BLOCK_SIZE) && !(read_size % AES_BLOCK_SIZE)))
|
|
{
|
|
/* Read data */
|
|
if (!ncaReadContentFile(nca_ctx, out, read_size, content_offset))
|
|
{
|
|
LOGFILE("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned)", read_size, content_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
|
|
/* Return right away if we're dealing with a plaintext FS section */
|
|
if (ctx->encryption_type == NcaEncryptionType_None)
|
|
{
|
|
ret = true;
|
|
goto exit;
|
|
}
|
|
|
|
/* Decrypt data */
|
|
if (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0)
|
|
{
|
|
sector_num = ((ctx->encryption_type == NcaEncryptionType_AesXts ? offset : (content_offset - NCA_HEADER_LENGTH)) / NCA_AES_XTS_SECTOR_SIZE);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), out, out, read_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != read_size)
|
|
{
|
|
LOGFILE("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned)", read_size, content_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
} else
|
|
if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx)
|
|
{
|
|
ncaUpdateAesCtrIv(ctx->ctr, content_offset);
|
|
aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr);
|
|
aes128CtrCrypt(&(ctx->ctr_ctx), out, out, read_size);
|
|
}
|
|
|
|
ret = true;
|
|
goto exit;
|
|
}
|
|
|
|
/* Calculate offsets and block sizes */
|
|
block_start_offset = ALIGN_DOWN(content_offset, (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE);
|
|
block_end_offset = ALIGN_UP(content_offset + read_size, (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE);
|
|
block_size = (block_end_offset - block_start_offset);
|
|
|
|
data_start_offset = (content_offset - block_start_offset);
|
|
chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size);
|
|
out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size);
|
|
|
|
/* Read data */
|
|
if (!ncaReadContentFile(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset))
|
|
{
|
|
LOGFILE("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned)", chunk_size, block_start_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
|
|
/* Decrypt data */
|
|
if (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0)
|
|
{
|
|
sector_num = ((ctx->encryption_type == NcaEncryptionType_AesXts ? offset : (content_offset - NCA_HEADER_LENGTH)) / NCA_AES_XTS_SECTOR_SIZE);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false);
|
|
if (crypt_res != chunk_size)
|
|
{
|
|
LOGFILE("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned)", chunk_size, block_start_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
} else
|
|
if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx)
|
|
{
|
|
ncaUpdateAesCtrIv(ctx->ctr, block_start_offset);
|
|
aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr);
|
|
aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size);
|
|
}
|
|
|
|
/* Copy decrypted data */
|
|
memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size);
|
|
|
|
ret = (block_size > NCA_CRYPTO_BUFFER_SIZE ? _ncaReadFsSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size, false) : true);
|
|
|
|
exit:
|
|
if (lock) mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *_ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset, bool lock)
|
|
{
|
|
if (lock) mutexLock(&g_ncaCryptoBufferMutex);
|
|
|
|
u8 *out = NULL;
|
|
bool success = false;
|
|
|
|
if (!g_ncaCryptoBuffer || !ctx || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < NCA_FULL_HEADER_LENGTH || ctx->section_type >= NcaFsSectionType_Invalid || \
|
|
ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type > NcaEncryptionType_Nca0 || !ctx->header || !data || !data_size || data_offset >= ctx->section_size || \
|
|
(data_offset + data_size) > ctx->section_size || !out_block_size || !out_block_offset)
|
|
{
|
|
LOGFILE("Invalid NCA FS section header parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
size_t crypt_res = 0;
|
|
u64 sector_num = 0;
|
|
|
|
NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx;
|
|
u64 content_offset = (ctx->section_offset + data_offset);
|
|
|
|
u64 block_start_offset = 0, block_end_offset = 0, block_size = 0;
|
|
u64 plain_chunk_offset = 0;
|
|
|
|
if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \
|
|
content_offset >= nca_ctx->content_size || (content_offset + data_size) > nca_ctx->content_size)
|
|
{
|
|
LOGFILE("Invalid NCA header parameters!");
|
|
goto exit;
|
|
}
|
|
|
|
/* Optimization for blocks from plaintext FS sections or blocks that are aligned to the AES-CTR / AES-XTS sector size */
|
|
if (ctx->encryption_type == NcaEncryptionType_None || \
|
|
((ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(data_size % NCA_AES_XTS_SECTOR_SIZE)) || \
|
|
((ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx) && !(content_offset % AES_BLOCK_SIZE) && !(data_size % AES_BLOCK_SIZE)))
|
|
{
|
|
/* Allocate memory */
|
|
out = malloc(data_size);
|
|
if (!out)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes buffer! (aligned)", data_size);
|
|
goto exit;
|
|
}
|
|
|
|
/* Copy data */
|
|
memcpy(out, data, data_size);
|
|
|
|
/* Encrypt data */
|
|
if (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0)
|
|
{
|
|
sector_num = ((ctx->encryption_type == NcaEncryptionType_AesXts ? data_offset : (content_offset - NCA_HEADER_LENGTH)) / NCA_AES_XTS_SECTOR_SIZE);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, data_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != data_size)
|
|
{
|
|
LOGFILE("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned)", data_size, content_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
} else
|
|
if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx)
|
|
{
|
|
ncaUpdateAesCtrIv(ctx->ctr, content_offset);
|
|
aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr);
|
|
aes128CtrCrypt(&(ctx->ctr_ctx), out, out, data_size);
|
|
}
|
|
|
|
*out_block_size = data_size;
|
|
*out_block_offset = content_offset;
|
|
|
|
success = true;
|
|
goto exit;
|
|
}
|
|
|
|
/* Calculate block offsets and size */
|
|
block_start_offset = ALIGN_DOWN(data_offset, (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE);
|
|
block_end_offset = ALIGN_UP(data_offset + data_size, (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0) ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE);
|
|
block_size = (block_end_offset - block_start_offset);
|
|
|
|
plain_chunk_offset = (data_offset - block_start_offset);
|
|
content_offset = (ctx->section_offset + block_start_offset);
|
|
|
|
/* Allocate memory */
|
|
out = malloc(block_size);
|
|
if (!out)
|
|
{
|
|
LOGFILE("Unable to allocate 0x%lX bytes buffer! (unaligned)", block_size);
|
|
goto exit;
|
|
}
|
|
|
|
/* Read decrypted data using aligned offset and size */
|
|
if (!_ncaReadFsSection(ctx, out, block_size, block_start_offset, false))
|
|
{
|
|
LOGFILE("Failed to read decrypted NCA \"%s\" FS section #%u data block!", nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
|
|
/* Replace plaintext data */
|
|
memcpy(out + plain_chunk_offset, data, data_size);
|
|
|
|
/* Reencrypt data */
|
|
if (ctx->encryption_type == NcaEncryptionType_AesXts || ctx->encryption_type == NcaEncryptionType_Nca0)
|
|
{
|
|
sector_num = ((ctx->encryption_type == NcaEncryptionType_AesXts ? block_start_offset : (content_offset - NCA_HEADER_LENGTH)) / NCA_AES_XTS_SECTOR_SIZE);
|
|
|
|
crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, block_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true);
|
|
if (crypt_res != block_size)
|
|
{
|
|
LOGFILE("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned)", block_size, content_offset, nca_ctx->content_id_str, ctx->section_num);
|
|
goto exit;
|
|
}
|
|
} else
|
|
if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx)
|
|
{
|
|
ncaUpdateAesCtrIv(ctx->ctr, content_offset);
|
|
aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr);
|
|
aes128CtrCrypt(&(ctx->ctr_ctx), out, out, block_size);
|
|
}
|
|
|
|
*out_block_size = block_size;
|
|
*out_block_offset = content_offset;
|
|
|
|
success = true;
|
|
|
|
exit:
|
|
if (!success && out)
|
|
{
|
|
free(out);
|
|
out = NULL;
|
|
}
|
|
|
|
if (lock) mutexUnlock(&g_ncaCryptoBufferMutex);
|
|
|
|
return out;
|
|
}
|