1
0
Fork 0
mirror of https://github.com/DarkMatterCore/nxdumptool.git synced 2024-11-23 02:36:41 +00:00
nxdumptool/source/usb.c
Pablo Curiel 3cb6ef93aa Some changes.
* Placed C++ extern "C" blocks inside include guards.

* Added a "clean_all" rule to the Makefile to avoid recompiling libusbhsfs after each time "clean" is used.

* Added static asserts for all structs that may need it throughout the code.

* Preprocessor macros are now used to generate certificate and ticket structs.
2021-03-24 13:25:19 -04:00

1355 lines
47 KiB
C

/*
* usb.c
*
* Heavily based in usb_comms from libnx.
*
* Copyright (c) 2018-2020, Switchbrew and libnx contributors.
* Copyright (c) 2020-2021, DarkMatterCore <pabloacurielz@gmail.com>.
*
* This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool).
*
* nxdumptool is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* nxdumptool is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "utils.h"
#include "usb.h"
#define USB_ABI_VERSION 1
#define USB_CMD_HEADER_MAGIC 0x4E584454 /* "NXDT". */
#define USB_TRANSFER_ALIGNMENT 0x1000 /* 4 KiB. */
#define USB_TRANSFER_TIMEOUT 5 /* 5 seconds. */
#define USB_DEV_VID 0x057E /* VID officially used by Nintendo in usb:ds. */
#define USB_DEV_PID 0x3000 /* PID officially used by Nintendo in usb:ds. */
#define USB_DEV_BCD_REL 0x0100 /* Device release number. Always 1.0. */
#define USB_FS_BCD_REVISION 0x0110 /* USB 1.1. */
#define USB_FS_EP0_MAX_PACKET_SIZE 0x40 /* 64 bytes. */
#define USB_FS_EP_MAX_PACKET_SIZE 0x40 /* 64 bytes. */
#define USB_HS_BCD_REVISION 0x0200 /* USB 2.0. */
#define USB_HS_EP0_MAX_PACKET_SIZE USB_FS_EP0_MAX_PACKET_SIZE /* 64 bytes. */
#define USB_HS_EP_MAX_PACKET_SIZE 0x200 /* 512 bytes. */
#define USB_SS_BCD_REVISION 0x0300 /* USB 3.0. */
#define USB_SS_EP_MAX_PACKET_SIZE 0x400 /* 1024 bytes. */
#define USB_SS_EP0_MAX_PACKET_SIZE 9 /* 512 bytes (1 << 9). */
#define USB_BOS_SIZE 0x16 /* usb_bos_descriptor + usb_2_0_extension_descriptor + usb_ss_usb_device_capability_descriptor. */
#define USB_LANGID_ENUS 0x0409
/* Type definitions. */
typedef struct {
RwLock lock, lock_in, lock_out;
bool initialized;
UsbDsInterface *interface;
UsbDsEndpoint *endpoint_in, *endpoint_out;
} UsbDeviceInterface;
typedef enum {
UsbCommandType_StartSession = 0,
UsbCommandType_SendFileProperties = 1,
UsbCommandType_CancelFileTransfer = 2,
UsbCommandType_SendNspHeader = 3,
UsbCommandType_EndSession = 4
} UsbCommandType;
typedef struct {
u32 magic;
u32 cmd;
u32 cmd_block_size;
u8 reserved[0x4];
} UsbCommandHeader;
NXDT_ASSERT(UsbCommandHeader, 0x10);
typedef struct {
u8 app_ver_major;
u8 app_ver_minor;
u8 app_ver_micro;
u8 abi_version;
char git_commit[8];
u8 reserved[0x4];
} UsbCommandStartSession;
NXDT_ASSERT(UsbCommandStartSession, 0x10);
typedef struct {
u64 file_size;
u32 filename_length;
u32 nsp_header_size;
char filename[FS_MAX_PATH];
u8 reserved_2[0xF];
} UsbCommandSendFileProperties;
NXDT_ASSERT(UsbCommandSendFileProperties, 0x320);
typedef enum {
///< Expected response code.
UsbStatusType_Success = 0,
///< Internal usage.
UsbStatusType_InvalidCommandSize = 1,
UsbStatusType_WriteCommandFailed = 2,
UsbStatusType_ReadStatusFailed = 3,
///< These can be returned by the host device.
UsbStatusType_InvalidMagicWord = 4,
UsbStatusType_UnsupportedCommand = 5,
UsbStatusType_UnsupportedAbiVersion = 6,
UsbStatusType_MalformedCommand = 7,
UsbStatusType_HostIoError = 8
} UsbStatusType;
typedef struct {
u32 magic;
u32 status; ///< UsbStatusType.
u16 max_packet_size; ///< USB host endpoint max packet size.
u8 reserved[0x6];
} UsbStatus;
NXDT_ASSERT(UsbStatus, 0x10);
/// Imported from libusb, with some adjustments.
enum usb_bos_type {
USB_BT_WIRELESS_USB_DEVICE_CAPABILITY = 1,
USB_BT_USB_2_0_EXTENSION = 2,
USB_BT_SS_USB_DEVICE_CAPABILITY = 3,
USB_BT_CONTAINER_ID = 4
};
/// Imported from libusb, with some adjustments.
enum usb_2_0_extension_attributes {
USB_BM_LPM_SUPPORT = 2
};
/// Imported from libusb, with some adjustments.
enum usb_ss_usb_device_capability_attributes {
USB_BM_LTM_SUPPORT = 2
};
/// Imported from libusb, with some adjustments.
enum usb_supported_speed {
USB_LOW_SPEED_OPERATION = BIT(0),
USB_FULL_SPEED_OPERATION = BIT(1),
USB_HIGH_SPEED_OPERATION = BIT(2),
USB_SUPER_SPEED_OPERATION = BIT(3)
};
/// Imported from libusb, with some adjustments.
struct usb_bos_descriptor {
u8 bLength;
u8 bDescriptorType; ///< Must match USB_DT_BOS.
u16 wTotalLength; ///< Length of this descriptor and all of its sub descriptors.
u8 bNumDeviceCaps; ///< The number of separate device capability descriptors in the BOS.
} PACKED;
NXDT_ASSERT(struct usb_bos_descriptor, 0x5);
/// Imported from libusb, with some adjustments.
struct usb_2_0_extension_descriptor {
u8 bLength;
u8 bDescriptorType; ///< Must match USB_DT_DEVICE_CAPABILITY.
u8 bDevCapabilityType; ///< Must match USB_BT_USB_2_0_EXTENSION.
u32 bmAttributes; ///< usb_2_0_extension_attributes.
} PACKED;
NXDT_ASSERT(struct usb_2_0_extension_descriptor, 0x7);
/// Imported from libusb, with some adjustments.
struct usb_ss_usb_device_capability_descriptor {
u8 bLength;
u8 bDescriptorType; ///< Must match USB_DT_DEVICE_CAPABILITY.
u8 bDevCapabilityType; ///< Must match USB_BT_SS_USB_DEVICE_CAPABILITY.
u8 bmAttributes; ///< usb_ss_usb_device_capability_attributes.
u16 wSpeedsSupported; ///< usb_supported_speed.
u8 bFunctionalitySupport; ///< The lowest speed at which all the functionality that the device supports is available to the user.
u8 bU1DevExitLat; ///< U1 Device Exit Latency.
u16 bU2DevExitLat; ///< U2 Device Exit Latency.
} PACKED;
NXDT_ASSERT(struct usb_ss_usb_device_capability_descriptor, 0xA);
/* Global variables. */
static RwLock g_usbDeviceLock = {0};
static UsbDeviceInterface g_usbDeviceInterface = {0};
static bool g_usbDeviceInterfaceInit = false;
static Event *g_usbStateChangeEvent = NULL;
static Thread g_usbDetectionThread = {0};
static UEvent g_usbDetectionThreadExitEvent = {0}, g_usbTimeoutEvent = {0};
static bool g_usbHostAvailable = false, g_usbSessionStarted = false, g_usbDetectionThreadExitFlag = false, g_nspTransferMode = false;
static atomic_bool g_usbDetectionThreadCreated = false;
static u8 *g_usbTransferBuffer = NULL;
static u64 g_usbTransferRemainingSize = 0, g_usbTransferWrittenSize = 0;
static u16 g_usbEndpointMaxPacketSize = 0;
/* Function prototypes. */
static bool usbCreateDetectionThread(void);
static void usbDestroyDetectionThread(void);
static void usbDetectionThreadFunc(void *arg);
static bool usbStartSession(void);
static void usbEndSession(void);
NX_INLINE void usbPrepareCommandHeader(u32 cmd, u32 cmd_block_size);
static bool usbSendCommand(void);
static void usbLogStatusDetail(u32 status);
NX_INLINE bool usbAllocateTransferBuffer(void);
NX_INLINE void usbFreeTransferBuffer(void);
static bool usbInitializeComms(void);
static void usbCloseComms(void);
static void usbFreeDeviceInterface(void);
NX_INLINE bool usbInitializeDeviceInterface(void);
static bool usbInitializeDeviceInterface5x(void);
static bool usbInitializeDeviceInterface1x(void);
NX_INLINE bool usbIsHostAvailable(void);
NX_INLINE void usbSetZltPacket(bool enable);
NX_INLINE bool usbRead(void *buf, size_t size);
NX_INLINE bool usbWrite(void *buf, size_t size);
static bool usbTransferData(void *buf, size_t size, UsbDsEndpoint *endpoint);
bool usbInitialize(void)
{
bool ret = false;
rwlockWriteLock(&g_usbDeviceLock);
/* Allocate USB transfer buffer. */
if (!usbAllocateTransferBuffer())
{
LOG_MSG("Failed to allocate memory for the USB transfer buffer!");
goto end;
}
/* Initialize USB device interface. */
if (!usbInitializeComms())
{
LOG_MSG("Failed to initialize USB device interface!");
goto end;
}
/* Retrieve USB state change kernel event. */
g_usbStateChangeEvent = usbDsGetStateChangeEvent();
if (!g_usbStateChangeEvent)
{
LOG_MSG("Failed to retrieve USB state change kernel event!");
goto end;
}
/* Create user-mode exit event. */
ueventCreate(&g_usbDetectionThreadExitEvent, true);
/* Create user-mode USB timeout event. */
ueventCreate(&g_usbTimeoutEvent, true);
/* Create USB detection thread. */
atomic_store(&g_usbDetectionThreadCreated, usbCreateDetectionThread());
if (!atomic_load(&g_usbDetectionThreadCreated)) goto end;
ret = true;
end:
rwlockWriteUnlock(&g_usbDeviceLock);
return ret;
}
void usbExit(void)
{
/* Destroy USB detection thread before attempting to lock. */
if (atomic_load(&g_usbDetectionThreadCreated))
{
usbDestroyDetectionThread();
atomic_store(&g_usbDetectionThreadCreated, false);
}
/* Now we can safely lock. */
rwlockWriteLock(&g_usbDeviceLock);
/* Clear USB state change kernel event. */
g_usbStateChangeEvent = NULL;
/* Close USB device interface. */
usbCloseComms();
/* Free USB transfer buffer. */
usbFreeTransferBuffer();
rwlockWriteUnlock(&g_usbDeviceLock);
}
void *usbAllocatePageAlignedBuffer(size_t size)
{
if (!size) return NULL;
return memalign(USB_TRANSFER_ALIGNMENT, size);
}
bool usbIsReady(void)
{
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
bool ret = (g_usbHostAvailable && g_usbSessionStarted);
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
return ret;
}
bool usbSendFileProperties(u64 file_size, const char *filename, u32 nsp_header_size)
{
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
bool ret = false;
UsbCommandSendFileProperties *cmd_block = NULL;
size_t filename_length = 0;
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized || !g_usbHostAvailable || !g_usbSessionStarted || !filename || \
!(filename_length = strlen(filename)) || filename_length >= FS_MAX_PATH || (!g_nspTransferMode && ((file_size && nsp_header_size >= file_size) || g_usbTransferRemainingSize)) || \
(g_nspTransferMode && nsp_header_size))
{
LOG_MSG("Invalid parameters!");
goto end;
}
/* Prepare command data. */
usbPrepareCommandHeader(UsbCommandType_SendFileProperties, (u32)sizeof(UsbCommandSendFileProperties));
cmd_block = (UsbCommandSendFileProperties*)(g_usbTransferBuffer + sizeof(UsbCommandHeader));
memset(cmd_block, 0, sizeof(UsbCommandSendFileProperties));
cmd_block->file_size = file_size;
cmd_block->filename_length = (u32)filename_length;
cmd_block->nsp_header_size = nsp_header_size;
snprintf(cmd_block->filename, sizeof(cmd_block->filename), "%s", filename);
/* Send command. */
ret = usbSendCommand();
if (!ret) goto end;
/* Update variables. */
g_usbTransferRemainingSize = file_size;
g_usbTransferWrittenSize = 0;
if (!g_nspTransferMode) g_nspTransferMode = (file_size && nsp_header_size);
end:
if (!ret && g_nspTransferMode) g_nspTransferMode = false;
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
return ret;
}
bool usbSendFileData(void *data, u64 data_size)
{
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
void *buf = NULL;
UsbStatus *cmd_status = NULL;
bool ret = false, zlt_required = false;
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized || !g_usbHostAvailable || !g_usbSessionStarted || !g_usbTransferRemainingSize || !data || \
!data_size || data_size > USB_TRANSFER_BUFFER_SIZE || data_size > g_usbTransferRemainingSize)
{
LOG_MSG("Invalid parameters!");
goto end;
}
/* Optimization for buffers that already are page aligned. */
if (IS_ALIGNED((u64)data, USB_TRANSFER_ALIGNMENT))
{
buf = data;
} else {
buf = g_usbTransferBuffer;
memcpy(buf, data, data_size);
}
/* Determine if we'll need to set a Zero Length Termination (ZLT) packet. */
/* This is automatically handled by usbDsEndpoint_PostBufferAsync(), depending on the ZLT setting from the input (write) endpoint. */
/* First, check if this is the last data chunk for this file. */
if ((g_usbTransferRemainingSize - data_size) == 0)
{
/* Enable ZLT if the last chunk size is aligned to the USB endpoint max packet size. */
if (IS_ALIGNED(data_size, g_usbEndpointMaxPacketSize))
{
zlt_required = true;
usbSetZltPacket(true);
//LOG_MSG("ZLT enabled. Last chunk size: 0x%lX bytes.", data_size);
}
} else {
/* Disable ZLT if this is the first of multiple data chunks. */
if (!g_usbTransferWrittenSize)
{
usbSetZltPacket(false);
//LOG_MSG("ZLT disabled (first chunk).");
}
}
/* Send data chunk. */
if (!usbWrite(buf, data_size))
{
LOG_MSG("Failed to write 0x%lX bytes long file data chunk from offset 0x%lX! (total size: 0x%lX).", data_size, g_usbTransferWrittenSize, g_usbTransferRemainingSize + g_usbTransferWrittenSize);
goto end;
}
ret = true;
g_usbTransferRemainingSize -= data_size;
g_usbTransferWrittenSize += data_size;
/* Check if this is the last chunk. */
if (!g_usbTransferRemainingSize)
{
/* Check response from host device. */
if (!usbRead(g_usbTransferBuffer, sizeof(UsbStatus)))
{
LOG_MSG("Failed to read 0x%lX bytes long status block!", sizeof(UsbStatus));
ret = false;
goto end;
}
cmd_status = (UsbStatus*)g_usbTransferBuffer;
if (cmd_status->magic != __builtin_bswap32(USB_CMD_HEADER_MAGIC))
{
LOG_MSG("Invalid status block magic word!");
ret = false;
goto end;
}
ret = (cmd_status->status == UsbStatusType_Success);
if (!ret) usbLogStatusDetail(cmd_status->status);
}
end:
/* Disable ZLT if it was previously enabled. */
if (zlt_required) usbSetZltPacket(false);
/* Reset variables in case of errors. */
if (!ret)
{
g_usbTransferRemainingSize = g_usbTransferWrittenSize = 0;
g_nspTransferMode = false;
}
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
return ret;
}
void usbCancelFileTransfer(void)
{
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized || !g_usbHostAvailable || !g_usbSessionStarted || (!g_usbTransferRemainingSize && \
!g_nspTransferMode)) goto end;
/* Reset variables right away. */
g_usbTransferRemainingSize = g_usbTransferWrittenSize = 0;
g_nspTransferMode = false;
/* Prepare command data. */
usbPrepareCommandHeader(UsbCommandType_CancelFileTransfer, 0);
/* Send command. We don't care about the result here. */
usbSendCommand();
end:
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
}
bool usbSendNspHeader(void *nsp_header, u32 nsp_header_size)
{
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
bool ret = false;
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized || !g_usbHostAvailable || !g_usbSessionStarted || g_usbTransferRemainingSize || \
!g_nspTransferMode || !nsp_header || !nsp_header_size || nsp_header_size > (USB_TRANSFER_BUFFER_SIZE - sizeof(UsbCommandHeader)))
{
LOG_MSG("Invalid parameters!");
goto end;
}
/* Disable NSP transfer mode right away. */
g_nspTransferMode = false;
/* Prepare command data. */
usbPrepareCommandHeader(UsbCommandType_SendNspHeader, nsp_header_size);
memcpy(g_usbTransferBuffer + sizeof(UsbCommandHeader), nsp_header, nsp_header_size);
/* Send command. */
ret = usbSendCommand();
end:
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
return ret;
}
static bool usbCreateDetectionThread(void)
{
if (!utilsCreateThread(&g_usbDetectionThread, usbDetectionThreadFunc, NULL, 1))
{
LOG_MSG("Failed to create USB detection thread!");
return false;
}
return true;
}
static void usbDestroyDetectionThread(void)
{
/* Signal the exit event to terminate the USB detection thread */
ueventSignal(&g_usbDetectionThreadExitEvent);
/* Wait for the USB detection thread to exit. */
utilsJoinThread(&g_usbDetectionThread);
}
static void usbDetectionThreadFunc(void *arg)
{
(void)arg;
Result rc = 0;
int idx = 0;
Waiter usb_change_event_waiter = waiterForEvent(g_usbStateChangeEvent);
Waiter usb_timeout_event_waiter = waiterForUEvent(&g_usbTimeoutEvent);
Waiter exit_event_waiter = waiterForUEvent(&g_usbDetectionThreadExitEvent);
while(true)
{
/* Wait until an event is triggered. */
rc = waitMulti(&idx, -1, usb_change_event_waiter, usb_timeout_event_waiter, exit_event_waiter);
if (R_FAILED(rc)) continue;
rwlockWriteLock(&g_usbDeviceLock);
rwlockWriteLock(&(g_usbDeviceInterface.lock));
/* Exit event triggered. */
if (idx == 2) break;
/* Retrieve current USB connection status. */
/* Only proceed if we're dealing with a status change. */
g_usbHostAvailable = usbIsHostAvailable();
g_usbSessionStarted = false;
g_usbTransferRemainingSize = g_usbTransferWrittenSize = 0;
g_usbEndpointMaxPacketSize = 0;
/* Start an USB session if we're connected to a host device. */
/* This will essentially hang this thread and all other threads that call USB-related functions until: */
/* a) A session is successfully established. */
/* b) The console is disconnected from the USB host. */
/* c) The thread exit event is triggered. */
if (g_usbHostAvailable)
{
/* Wait until a session is established. */
g_usbSessionStarted = usbStartSession();
if (g_usbSessionStarted)
{
LOG_MSG("USB session successfully established. Endpoint max packet size: 0x%04X.", g_usbEndpointMaxPacketSize);
} else {
/* Check if the exit event was triggered while waiting for a session to be established. */
if (g_usbDetectionThreadExitFlag) break;
}
}
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
}
/* Close USB session if needed. */
if (g_usbHostAvailable && g_usbSessionStarted) usbEndSession();
g_usbHostAvailable = g_usbSessionStarted = g_usbDetectionThreadExitFlag = false;
g_usbTransferRemainingSize = g_usbTransferWrittenSize = 0;
g_usbEndpointMaxPacketSize = 0;
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
rwlockWriteUnlock(&g_usbDeviceLock);
threadExit();
}
static bool usbStartSession(void)
{
UsbCommandStartSession *cmd_block = NULL;
bool ret = false;
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized)
{
LOG_MSG("Invalid parameters!");
goto end;
}
usbPrepareCommandHeader(UsbCommandType_StartSession, (u32)sizeof(UsbCommandStartSession));
cmd_block = (UsbCommandStartSession*)(g_usbTransferBuffer + sizeof(UsbCommandHeader));
memset(cmd_block, 0, sizeof(UsbCommandStartSession));
cmd_block->app_ver_major = VERSION_MAJOR;
cmd_block->app_ver_minor = VERSION_MINOR;
cmd_block->app_ver_micro = VERSION_MICRO;
cmd_block->abi_version = USB_ABI_VERSION;
snprintf(cmd_block->git_commit, sizeof(cmd_block->git_commit), GIT_COMMIT);
ret = usbSendCommand();
if (ret)
{
/* Get the endpoint max packet size from the response sent by the USB host. */
/* This is done to accurately know when and where to enable Zero Length Termination (ZLT) packets during bulk transfers. */
/* As much as I'd like to avoid this, usb:ds doesn't disclose information such as the exact device descriptor and/or speed used by the USB host. */
UsbStatus *cmd_status = (UsbStatus*)g_usbTransferBuffer;
g_usbEndpointMaxPacketSize = cmd_status->max_packet_size;
if (g_usbEndpointMaxPacketSize != USB_FS_EP_MAX_PACKET_SIZE && g_usbEndpointMaxPacketSize != USB_HS_EP_MAX_PACKET_SIZE && g_usbEndpointMaxPacketSize != USB_SS_EP_MAX_PACKET_SIZE)
{
LOG_MSG("Invalid endpoint max packet size value received from USB host: 0x%04X.", g_usbEndpointMaxPacketSize);
/* Reset flags. */
ret = false;
g_usbEndpointMaxPacketSize = 0;
}
}
end:
return ret;
}
static void usbEndSession(void)
{
if (!g_usbTransferBuffer || !g_usbDeviceInterfaceInit || !g_usbDeviceInterface.initialized || !g_usbHostAvailable || !g_usbSessionStarted)
{
LOG_MSG("Invalid parameters!");
return;
}
/* Prepare command data. */
usbPrepareCommandHeader(UsbCommandType_EndSession, 0);
/* Send command. We don't care about the result here. */
usbSendCommand();
}
NX_INLINE void usbPrepareCommandHeader(u32 cmd, u32 cmd_block_size)
{
if (cmd > UsbCommandType_EndSession) return;
UsbCommandHeader *cmd_header = (UsbCommandHeader*)g_usbTransferBuffer;
memset(cmd_header, 0, sizeof(UsbCommandHeader));
cmd_header->magic = __builtin_bswap32(USB_CMD_HEADER_MAGIC);
cmd_header->cmd = cmd;
cmd_header->cmd_block_size = cmd_block_size;
}
static bool usbSendCommand(void)
{
UsbCommandHeader *cmd_header = (UsbCommandHeader*)g_usbTransferBuffer;
u32 cmd = cmd_header->cmd, cmd_block_size = cmd_header->cmd_block_size;
UsbStatus *cmd_status = (UsbStatus*)g_usbTransferBuffer;
u32 status = UsbStatusType_Success;
bool ret = false, zlt_required = false, cmd_block_written = false;
if ((sizeof(UsbCommandHeader) + cmd_block_size) > USB_TRANSFER_BUFFER_SIZE)
{
LOG_MSG("Invalid command size!");
status = UsbStatusType_InvalidCommandSize;
goto end;
}
/* Write command header first. */
if (!usbWrite(cmd_header, sizeof(UsbCommandHeader)))
{
LOG_MSG("Failed to write header for type 0x%X command!", cmd);
status = UsbStatusType_WriteCommandFailed;
goto end;
}
/* Check if we need to transfer a command block. */
if (cmd_block_size)
{
/* Move command block data within the transfer buffer to guarantee we'll work with proper alignment. */
memmove(g_usbTransferBuffer, g_usbTransferBuffer + sizeof(UsbCommandHeader), cmd_block_size);
/* Determine if we'll need to set a Zero Length Termination (ZLT) packet after sending the command block. */
zlt_required = IS_ALIGNED(cmd_block_size, g_usbEndpointMaxPacketSize);
if (zlt_required) usbSetZltPacket(true);
/* Write command block. */
cmd_block_written = usbWrite(g_usbTransferBuffer, cmd_block_size);
if (!cmd_block_written)
{
LOG_MSG("Failed to write command block for type 0x%X command!", cmd);
status = UsbStatusType_WriteCommandFailed;
}
/* Disable ZLT if it was previously enabled. */
if (zlt_required) usbSetZltPacket(false);
/* Bail out if we failed to write the command block. */
if (!cmd_block_written) goto end;
}
/* Read status block. */
if (!usbRead(cmd_status, sizeof(UsbStatus)))
{
LOG_MSG("Failed to read 0x%lX bytes long status block for type 0x%X command!", sizeof(UsbStatus), cmd);
status = UsbStatusType_ReadStatusFailed;
goto end;
}
/* Verify magic word in status block. */
if (cmd_status->magic != __builtin_bswap32(USB_CMD_HEADER_MAGIC))
{
status = UsbStatusType_InvalidMagicWord;
goto end;
}
/* Update return value. */
ret = ((status = cmd_status->status) == UsbStatusType_Success);
end:
if (!ret) usbLogStatusDetail(status);
return ret;
}
static void usbLogStatusDetail(u32 status)
{
switch(status)
{
case UsbStatusType_Success:
case UsbStatusType_InvalidCommandSize:
case UsbStatusType_WriteCommandFailed:
case UsbStatusType_ReadStatusFailed:
break;
case UsbStatusType_InvalidMagicWord:
LOG_MSG("Host replied with Invalid Magic Word status code.");
break;
case UsbStatusType_UnsupportedCommand:
LOG_MSG("Host replied with Unsupported Command status code.");
break;
case UsbStatusType_UnsupportedAbiVersion:
LOG_MSG("Host replied with Unsupported ABI Version status code.");
break;
case UsbStatusType_MalformedCommand:
LOG_MSG("Host replied with Malformed Command status code.");
break;
case UsbStatusType_HostIoError:
LOG_MSG("Host replied with I/O Error status code.");
break;
default:
LOG_MSG("Unknown status code: 0x%X.", status);
break;
}
}
NX_INLINE bool usbAllocateTransferBuffer(void)
{
if (g_usbTransferBuffer) return true;
g_usbTransferBuffer = memalign(USB_TRANSFER_ALIGNMENT, USB_TRANSFER_BUFFER_SIZE);
return (g_usbTransferBuffer != NULL);
}
NX_INLINE void usbFreeTransferBuffer(void)
{
if (!g_usbTransferBuffer) return;
free(g_usbTransferBuffer);
g_usbTransferBuffer = NULL;
}
static bool usbInitializeComms(void)
{
Result rc = 0;
/* Used on HOS >= 5.0.0. */
struct usb_device_descriptor device_descriptor = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = USB_FS_BCD_REVISION, /* USB 1.1. Updated before setting new device descriptors for USB 2.0 and 3.0. */
.bDeviceClass = 0, /* Defined at interface level. */
.bDeviceSubClass = 0, /* Defined at interface level. */
.bDeviceProtocol = 0, /* Defined at interface level. */
.bMaxPacketSize0 = USB_FS_EP0_MAX_PACKET_SIZE, /* Updated before setting the USB 3.0 device descriptor. */
.idVendor = USB_DEV_VID,
.idProduct = USB_DEV_PID,
.bcdDevice = USB_DEV_BCD_REL,
.iManufacturer = 0, /* Filled at a later time. */
.iProduct = 0, /* Filled at a later time. */
.iSerialNumber = 0, /* Filled at a later time. */
.bNumConfigurations = 1
};
static const u16 supported_langs[] = { USB_LANGID_ENUS };
static const u16 num_supported_langs = (u16)MAX_ELEMENTS(supported_langs);
u8 bos[USB_BOS_SIZE] = {0};
struct usb_bos_descriptor *bos_desc = (struct usb_bos_descriptor*)bos;
struct usb_2_0_extension_descriptor *usb2_ext_desc = (struct usb_2_0_extension_descriptor*)(bos + sizeof(struct usb_bos_descriptor));
struct usb_ss_usb_device_capability_descriptor *usb3_devcap_desc = (struct usb_ss_usb_device_capability_descriptor*)((u8*)usb2_ext_desc + sizeof(struct usb_2_0_extension_descriptor));
bos_desc->bLength = sizeof(struct usb_bos_descriptor);
bos_desc->bDescriptorType = USB_DT_BOS;
bos_desc->wTotalLength = USB_BOS_SIZE;
bos_desc->bNumDeviceCaps = 2; /* USB 2.0 + USB 3.0. No extra capabilities for USB 1.x. */
usb2_ext_desc->bLength = sizeof(struct usb_2_0_extension_descriptor);
usb2_ext_desc->bDescriptorType = USB_DT_DEVICE_CAPABILITY;
usb2_ext_desc->bDevCapabilityType = USB_BT_USB_2_0_EXTENSION;
usb2_ext_desc->bmAttributes = USB_BM_LPM_SUPPORT;
usb3_devcap_desc->bLength = sizeof(struct usb_ss_usb_device_capability_descriptor);
usb3_devcap_desc->bDescriptorType = USB_DT_DEVICE_CAPABILITY;
usb3_devcap_desc->bDevCapabilityType = USB_BT_SS_USB_DEVICE_CAPABILITY;
usb3_devcap_desc->bmAttributes = 0;
usb3_devcap_desc->wSpeedsSupported = (USB_SUPER_SPEED_OPERATION | USB_HIGH_SPEED_OPERATION | USB_FULL_SPEED_OPERATION);
usb3_devcap_desc->bFunctionalitySupport = 1; /* We can fully work under USB 1.x. */
usb3_devcap_desc->bU1DevExitLat = 0;
usb3_devcap_desc->bU2DevExitLat = 0;
/* Used on HOS < 5.0.0. */
static const UsbDsDeviceInfo device_info = {
.idVendor = USB_DEV_VID,
.idProduct = USB_DEV_PID,
.bcdDevice = USB_DEV_BCD_REL,
.Manufacturer = APP_AUTHOR,
.Product = APP_TITLE,
.SerialNumber = APP_VERSION
};
bool ret = (g_usbDeviceInterfaceInit && g_usbDeviceInterface.initialized);
if (ret) goto end;
rc = usbDsInitialize();
if (R_FAILED(rc))
{
LOG_MSG("usbDsInitialize failed! (0x%08X).", rc);
goto end;
}
if (hosversionAtLeast(5, 0, 0))
{
/* Set language string descriptor. */
rc = usbDsAddUsbLanguageStringDescriptor(NULL, supported_langs, num_supported_langs);
if (R_FAILED(rc)) LOG_MSG("usbDsAddUsbLanguageStringDescriptor failed! (0x%08X).", rc);
/* Set manufacturer string descriptor. */
if (R_SUCCEEDED(rc))
{
rc = usbDsAddUsbStringDescriptor(&(device_descriptor.iManufacturer), APP_AUTHOR);
if (R_FAILED(rc)) LOG_MSG("usbDsAddUsbStringDescriptor failed! (0x%08X) (manufacturer).", rc);
}
/* Set product string descriptor. */
if (R_SUCCEEDED(rc))
{
rc = usbDsAddUsbStringDescriptor(&(device_descriptor.iProduct), APP_TITLE);
if (R_FAILED(rc)) LOG_MSG("usbDsAddUsbStringDescriptor failed! (0x%08X) (product).", rc);
}
/* Set serial number string descriptor. */
if (R_SUCCEEDED(rc))
{
rc = usbDsAddUsbStringDescriptor(&(device_descriptor.iSerialNumber), APP_VERSION);
if (R_FAILED(rc)) LOG_MSG("usbDsAddUsbStringDescriptor failed! (0x%08X) (serial number).", rc);
}
/* Set device descriptors. */
if (R_SUCCEEDED(rc))
{
rc = usbDsSetUsbDeviceDescriptor(UsbDeviceSpeed_Full, &device_descriptor); /* Full Speed is USB 1.1. */
if (R_FAILED(rc)) LOG_MSG("usbDsSetUsbDeviceDescriptor failed! (0x%08X) (USB 1.1).", rc);
}
if (R_SUCCEEDED(rc))
{
/* Update USB revision before proceeding. */
device_descriptor.bcdUSB = USB_HS_BCD_REVISION;
rc = usbDsSetUsbDeviceDescriptor(UsbDeviceSpeed_High, &device_descriptor); /* High Speed is USB 2.0. */
if (R_FAILED(rc)) LOG_MSG("usbDsSetUsbDeviceDescriptor failed! (0x%08X) (USB 2.0).", rc);
}
if (R_SUCCEEDED(rc))
{
/* Update USB revision and upgrade control endpoint packet size before proceeding. */
device_descriptor.bcdUSB = USB_SS_BCD_REVISION;
device_descriptor.bMaxPacketSize0 = USB_SS_EP0_MAX_PACKET_SIZE;
rc = usbDsSetUsbDeviceDescriptor(UsbDeviceSpeed_Super, &device_descriptor); /* Super Speed is USB 3.0. */
if (R_FAILED(rc)) LOG_MSG("usbDsSetUsbDeviceDescriptor failed! (0x%08X) (USB 3.0).", rc);
}
/* Set Binary Object Store. */
if (R_SUCCEEDED(rc))
{
rc = usbDsSetBinaryObjectStore(bos, USB_BOS_SIZE);
if (R_FAILED(rc)) LOG_MSG("usbDsSetBinaryObjectStore failed! (0x%08X).", rc);
}
} else {
/* Set VID, PID and BCD. */
rc = usbDsSetVidPidBcd(&device_info);
if (R_FAILED(rc)) LOG_MSG("usbDsSetVidPidBcd failed! (0x%08X).", rc);
}
if (R_FAILED(rc)) goto end;
/* Initialize USB device interface. */
rwlockWriteLock(&(g_usbDeviceInterface.lock));
rwlockWriteLock(&(g_usbDeviceInterface.lock_in));
rwlockWriteLock(&(g_usbDeviceInterface.lock_out));
bool dev_iface_init = usbInitializeDeviceInterface();
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_out));
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_in));
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
if (!dev_iface_init)
{
LOG_MSG("Failed to initialize USB device interface!");
goto end;
}
if (hosversionAtLeast(5, 0, 0))
{
rc = usbDsEnable();
if (R_FAILED(rc))
{
LOG_MSG("usbDsEnable failed! (0x%08X).", rc);
goto end;
}
}
ret = g_usbDeviceInterfaceInit = true;
end:
if (!ret) usbCloseComms();
return ret;
}
static void usbCloseComms(void)
{
usbDsExit();
g_usbDeviceInterfaceInit = false;
usbFreeDeviceInterface();
}
static void usbFreeDeviceInterface(void)
{
rwlockWriteLock(&(g_usbDeviceInterface.lock));
if (!g_usbDeviceInterface.initialized) {
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
return;
}
rwlockWriteLock(&(g_usbDeviceInterface.lock_in));
rwlockWriteLock(&(g_usbDeviceInterface.lock_out));
g_usbDeviceInterface.initialized = false;
g_usbDeviceInterface.interface = NULL;
g_usbDeviceInterface.endpoint_in = NULL;
g_usbDeviceInterface.endpoint_out = NULL;
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_out));
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_in));
rwlockWriteUnlock(&(g_usbDeviceInterface.lock));
}
NX_INLINE bool usbInitializeDeviceInterface(void)
{
return (hosversionAtLeast(5, 0, 0) ? usbInitializeDeviceInterface5x() : usbInitializeDeviceInterface1x());
}
static bool usbInitializeDeviceInterface5x(void)
{
Result rc = 0;
struct usb_interface_descriptor interface_descriptor = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = USBDS_DEFAULT_InterfaceNumber,
.bAlternateSetting = 0,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceProtocol = USB_CLASS_VENDOR_SPEC,
.iInterface = 0
};
struct usb_endpoint_descriptor endpoint_descriptor_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_ENDPOINT_IN,
.bmAttributes = USB_TRANSFER_TYPE_BULK,
.wMaxPacketSize = USB_FS_EP_MAX_PACKET_SIZE, /* Updated before setting new device descriptors for USB 2.0 and 3.0. */
.bInterval = 0
};
struct usb_endpoint_descriptor endpoint_descriptor_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_ENDPOINT_OUT,
.bmAttributes = USB_TRANSFER_TYPE_BULK,
.wMaxPacketSize = USB_FS_EP_MAX_PACKET_SIZE, /* Updated before setting new device descriptors for USB 2.0 and 3.0. */
.bInterval = 0
};
struct usb_ss_endpoint_companion_descriptor endpoint_companion = {
.bLength = sizeof(struct usb_ss_endpoint_companion_descriptor),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMPANION,
.bMaxBurst = 0x0F,
.bmAttributes = 0,
.wBytesPerInterval = 0
};
/* Enable device interface. */
g_usbDeviceInterface.initialized = true;
/* Setup interface. */
rc = usbDsRegisterInterface(&(g_usbDeviceInterface.interface));
if (R_FAILED(rc))
{
LOG_MSG("usbDsRegisterInterface failed! (0x%08X).", rc);
return false;
}
interface_descriptor.bInterfaceNumber = g_usbDeviceInterface.interface->interface_index;
endpoint_descriptor_in.bEndpointAddress += (interface_descriptor.bInterfaceNumber + 1);
endpoint_descriptor_out.bEndpointAddress += (interface_descriptor.bInterfaceNumber + 1);
/* Full Speed config (USB 1.1). */
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Full, &interface_descriptor, USB_DT_INTERFACE_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 1.1) (interface).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Full, &endpoint_descriptor_in, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 1.1) (in endpoint).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Full, &endpoint_descriptor_out, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 1.1) (out endpoint).", rc);
return false;
}
/* High Speed config (USB 2.0). */
endpoint_descriptor_in.wMaxPacketSize = USB_HS_EP_MAX_PACKET_SIZE;
endpoint_descriptor_out.wMaxPacketSize = USB_HS_EP_MAX_PACKET_SIZE;
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_High, &interface_descriptor, USB_DT_INTERFACE_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 2.0) (interface).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_High, &endpoint_descriptor_in, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 2.0) (in endpoint).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_High, &endpoint_descriptor_out, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 2.0) (out endpoint).", rc);
return false;
}
/* Super Speed config (USB 3.0). */
endpoint_descriptor_in.wMaxPacketSize = USB_SS_EP_MAX_PACKET_SIZE;
endpoint_descriptor_out.wMaxPacketSize = USB_SS_EP_MAX_PACKET_SIZE;
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Super, &interface_descriptor, USB_DT_INTERFACE_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 3.0) (interface).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Super, &endpoint_descriptor_in, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 3.0) (in endpoint).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Super, &endpoint_companion, USB_DT_SS_ENDPOINT_COMPANION_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 3.0) (in endpoint companion).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Super, &endpoint_descriptor_out, USB_DT_ENDPOINT_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 3.0) (out endpoint).", rc);
return false;
}
rc = usbDsInterface_AppendConfigurationData(g_usbDeviceInterface.interface, UsbDeviceSpeed_Super, &endpoint_companion, USB_DT_SS_ENDPOINT_COMPANION_SIZE);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_AppendConfigurationData failed! (0x%08X) (USB 3.0) (out endpoint companion).", rc);
return false;
}
/* Setup endpoints. */
rc = usbDsInterface_RegisterEndpoint(g_usbDeviceInterface.interface, &(g_usbDeviceInterface.endpoint_in), endpoint_descriptor_in.bEndpointAddress);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_RegisterEndpoint failed! (0x%08X) (in endpoint).", rc);
return false;
}
rc = usbDsInterface_RegisterEndpoint(g_usbDeviceInterface.interface, &(g_usbDeviceInterface.endpoint_out), endpoint_descriptor_out.bEndpointAddress);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_RegisterEndpoint failed! (0x%08X) (out endpoint).", rc);
return false;
}
rc = usbDsInterface_EnableInterface(g_usbDeviceInterface.interface);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_EnableInterface failed! (0x%08X).", rc);
return false;
}
return true;
}
static bool usbInitializeDeviceInterface1x(void)
{
Result rc = 0;
struct usb_interface_descriptor interface_descriptor = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceProtocol = USB_CLASS_VENDOR_SPEC,
.iInterface = 0
};
struct usb_endpoint_descriptor endpoint_descriptor_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_ENDPOINT_IN,
.bmAttributes = USB_TRANSFER_TYPE_BULK,
.wMaxPacketSize = USB_HS_EP_MAX_PACKET_SIZE,
.bInterval = 0
};
struct usb_endpoint_descriptor endpoint_descriptor_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_ENDPOINT_OUT,
.bmAttributes = USB_TRANSFER_TYPE_BULK,
.wMaxPacketSize = USB_HS_EP_MAX_PACKET_SIZE,
.bInterval = 0
};
/* Enable device interface. */
g_usbDeviceInterface.initialized = true;
/* Setup interface. */
rc = usbDsGetDsInterface(&(g_usbDeviceInterface.interface), &interface_descriptor, "usb");
if (R_FAILED(rc))
{
LOG_MSG("usbDsGetDsInterface failed! (0x%08X).", rc);
return false;
}
/* Setup endpoints. */
rc = usbDsInterface_GetDsEndpoint(g_usbDeviceInterface.interface, &(g_usbDeviceInterface.endpoint_in), &endpoint_descriptor_in);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_GetDsEndpoint failed! (0x%08X) (in endpoint).", rc);
return false;
}
rc = usbDsInterface_GetDsEndpoint(g_usbDeviceInterface.interface, &(g_usbDeviceInterface.endpoint_out), &endpoint_descriptor_out);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_GetDsEndpoint failed! (0x%08X) (out endpoint).", rc);
return false;
}
rc = usbDsInterface_EnableInterface(g_usbDeviceInterface.interface);
if (R_FAILED(rc))
{
LOG_MSG("usbDsInterface_EnableInterface failed! (0x%08X).", rc);
return false;
}
return true;
}
NX_INLINE bool usbIsHostAvailable(void)
{
UsbState state = UsbState_Detached;
Result rc = usbDsGetState(&state);
return (R_SUCCEEDED(rc) && state == UsbState_Configured);
}
NX_INLINE void usbSetZltPacket(bool enable)
{
rwlockWriteLock(&(g_usbDeviceInterface.lock_in));
usbDsEndpoint_SetZlt(g_usbDeviceInterface.endpoint_in, enable);
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_in));
}
NX_INLINE bool usbRead(void *buf, u64 size)
{
rwlockWriteLock(&(g_usbDeviceInterface.lock_out));
bool ret = usbTransferData(buf, size, g_usbDeviceInterface.endpoint_out);
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_out));
return ret;
}
NX_INLINE bool usbWrite(void *buf, u64 size)
{
rwlockWriteLock(&(g_usbDeviceInterface.lock_in));
bool ret = usbTransferData(buf, size, g_usbDeviceInterface.endpoint_in);
rwlockWriteUnlock(&(g_usbDeviceInterface.lock_in));
return ret;
}
static bool usbTransferData(void *buf, u64 size, UsbDsEndpoint *endpoint)
{
if (!buf || !IS_ALIGNED((u64)buf, USB_TRANSFER_ALIGNMENT) || !size || !endpoint)
{
LOG_MSG("Invalid parameters!");
return false;
}
if (!usbIsHostAvailable())
{
LOG_MSG("USB host unavailable!");
return false;
}
Result rc = 0;
UsbDsReportData report_data = {0};
u32 urb_id = 0, transferred_size = 0;
bool thread_exit = false;
/* Start an USB transfer using the provided endpoint. */
rc = usbDsEndpoint_PostBufferAsync(endpoint, buf, size, &urb_id);
if (R_FAILED(rc))
{
LOG_MSG("usbDsEndpoint_PostBufferAsync failed! (0x%08X) (URB ID %u).", rc, urb_id);
return false;
}
/* Wait for the transfer to finish. */
if (g_usbSessionStarted)
{
/* If the USB transfer session has already been started, then use a regular timeout value. */
rc = eventWait(&(endpoint->CompletionEvent), USB_TRANSFER_TIMEOUT * (u64)1000000000);
} else {
/* If we're starting an USB transfer session, wait indefinitely inside a loop to let the user start the companion app. */
int idx = 0;
Waiter completion_event_waiter = waiterForEvent(&(endpoint->CompletionEvent));
Waiter exit_event_waiter = waiterForUEvent(&g_usbDetectionThreadExitEvent);
rc = waitMulti(&idx, -1, completion_event_waiter, exit_event_waiter);
if (R_SUCCEEDED(rc) && idx == 1)
{
/* Exit event triggered. */
rc = MAKERESULT(Module_Kernel, KernelError_TimedOut);
g_usbDetectionThreadExitFlag = thread_exit = true;
}
}
/* Clear the endpoint completion event. */
if (!thread_exit) eventClear(&(endpoint->CompletionEvent));
if (R_FAILED(rc))
{
/* Cancel transfer. */
usbDsEndpoint_Cancel(endpoint);
/* Safety measure: wait until the completion event is triggered again before proceeding. */
eventWait(&(endpoint->CompletionEvent), UINT64_MAX);
eventClear(&(endpoint->CompletionEvent));
/* Signal user-mode USB timeout event if needed. */
/* This will "reset" the USB connection by making the background thread wait until a new session is established. */
if (g_usbSessionStarted) ueventSignal(&g_usbTimeoutEvent);
if (!thread_exit) LOG_MSG("eventWait failed! (0x%08X) (URB ID %u).", rc, urb_id);
return false;
}
rc = usbDsEndpoint_GetReportData(endpoint, &report_data);
if (R_FAILED(rc))
{
LOG_MSG("usbDsEndpoint_GetReportData failed! (0x%08X) (URB ID %u).", rc, urb_id);
return false;
}
rc = usbDsParseReportData(&report_data, urb_id, NULL, &transferred_size);
if (R_FAILED(rc))
{
LOG_MSG("usbDsParseReportData failed! (0x%08X) (URB ID %u).", rc, urb_id);
return false;
}
if (transferred_size != size)
{
LOG_MSG("USB transfer failed! Expected 0x%lX bytes, got 0x%X bytes (URB ID %u).", size, transferred_size, urb_id);
return false;
}
return true;
}