2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00
yuzu/src/audio_core/splitter_context.cpp

618 lines
19 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/behavior_info.h"
#include "audio_core/splitter_context.h"
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
namespace AudioCore {
ServerSplitterDestinationData::ServerSplitterDestinationData(s32 id) : id(id) {}
ServerSplitterDestinationData::~ServerSplitterDestinationData() = default;
void ServerSplitterDestinationData::Update(SplitterInfo::InDestinationParams& header) {
// Log error as these are not actually failure states
if (header.magic != SplitterMagic::DataHeader) {
LOG_ERROR(Audio, "Splitter destination header is invalid!");
return;
}
// Incorrect splitter id
if (header.splitter_id != id) {
LOG_ERROR(Audio, "Splitter destination ids do not match!");
return;
}
mix_id = header.mix_id;
// Copy our mix volumes
std::copy(header.mix_volumes.begin(), header.mix_volumes.end(), current_mix_volumes.begin());
if (!in_use && header.in_use) {
// Update mix volumes
std::copy(current_mix_volumes.begin(), current_mix_volumes.end(), last_mix_volumes.begin());
needs_update = false;
}
in_use = header.in_use;
}
ServerSplitterDestinationData* ServerSplitterDestinationData::GetNextDestination() {
return next;
}
const ServerSplitterDestinationData* ServerSplitterDestinationData::GetNextDestination() const {
return next;
}
void ServerSplitterDestinationData::SetNextDestination(ServerSplitterDestinationData* dest) {
next = dest;
}
bool ServerSplitterDestinationData::ValidMixId() const {
return GetMixId() != AudioCommon::NO_MIX;
}
s32 ServerSplitterDestinationData::GetMixId() const {
return mix_id;
}
bool ServerSplitterDestinationData::IsConfigured() const {
return in_use && ValidMixId();
}
float ServerSplitterDestinationData::GetMixVolume(std::size_t i) const {
ASSERT(i < AudioCommon::MAX_MIX_BUFFERS);
return current_mix_volumes.at(i);
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerSplitterDestinationData::CurrentMixVolumes() const {
return current_mix_volumes;
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerSplitterDestinationData::LastMixVolumes() const {
return last_mix_volumes;
}
void ServerSplitterDestinationData::MarkDirty() {
needs_update = true;
}
void ServerSplitterDestinationData::UpdateInternalState() {
if (in_use && needs_update) {
std::copy(current_mix_volumes.begin(), current_mix_volumes.end(), last_mix_volumes.begin());
}
needs_update = false;
}
ServerSplitterInfo::ServerSplitterInfo(s32 id) : id(id) {}
ServerSplitterInfo::~ServerSplitterInfo() = default;
void ServerSplitterInfo::InitializeInfos() {
send_length = 0;
head = nullptr;
new_connection = true;
}
void ServerSplitterInfo::ClearNewConnectionFlag() {
new_connection = false;
}
std::size_t ServerSplitterInfo::Update(SplitterInfo::InInfoPrams& header) {
if (header.send_id != id) {
return 0;
}
sample_rate = header.sample_rate;
new_connection = true;
// We need to update the size here due to the splitter bug being present and providing an
// incorrect size. We're suppose to also update the header here but we just ignore and continue
2020-10-21 03:07:39 +01:00
return (sizeof(s32_le) * (header.length - 1)) + (sizeof(s32_le) * 3);
}
ServerSplitterDestinationData* ServerSplitterInfo::GetHead() {
return head;
}
const ServerSplitterDestinationData* ServerSplitterInfo::GetHead() const {
return head;
}
ServerSplitterDestinationData* ServerSplitterInfo::GetData(std::size_t depth) {
auto current_head = head;
for (std::size_t i = 0; i < depth; i++) {
if (current_head == nullptr) {
return nullptr;
}
current_head = current_head->GetNextDestination();
}
return current_head;
}
const ServerSplitterDestinationData* ServerSplitterInfo::GetData(std::size_t depth) const {
auto current_head = head;
for (std::size_t i = 0; i < depth; i++) {
if (current_head == nullptr) {
return nullptr;
}
current_head = current_head->GetNextDestination();
}
return current_head;
}
bool ServerSplitterInfo::HasNewConnection() const {
return new_connection;
}
s32 ServerSplitterInfo::GetLength() const {
return send_length;
}
void ServerSplitterInfo::SetHead(ServerSplitterDestinationData* new_head) {
head = new_head;
}
void ServerSplitterInfo::SetHeadDepth(s32 length) {
send_length = length;
}
SplitterContext::SplitterContext() = default;
SplitterContext::~SplitterContext() = default;
void SplitterContext::Initialize(BehaviorInfo& behavior_info, std::size_t _info_count,
std::size_t _data_count) {
if (!behavior_info.IsSplitterSupported() || _data_count == 0 || _info_count == 0) {
Setup(0, 0, false);
return;
}
// Only initialize if we're using splitters
Setup(_info_count, _data_count, behavior_info.IsSplitterBugFixed());
}
bool SplitterContext::Update(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read) {
2020-07-25 03:32:05 +01:00
const auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
if (info_count == 0 || data_count == 0) {
bytes_read = 0;
return true;
}
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InHeader))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InHeader header{};
std::memcpy(&header, input.data() + input_offset, sizeof(SplitterInfo::InHeader));
UpdateOffsets(sizeof(SplitterInfo::InHeader));
if (header.magic != SplitterMagic::SplitterHeader) {
LOG_ERROR(Audio, "Invalid header magic! Expecting {:X} but got {:X}",
SplitterMagic::SplitterHeader, header.magic);
return false;
}
// Clear all connections
for (auto& info : infos) {
info.ClearNewConnectionFlag();
}
UpdateInfo(input, input_offset, bytes_read, header.info_count);
UpdateData(input, input_offset, bytes_read, header.data_count);
const auto aligned_bytes_read = Common::AlignUp(bytes_read, 16);
input_offset += aligned_bytes_read - bytes_read;
bytes_read = aligned_bytes_read;
return true;
}
bool SplitterContext::UsingSplitter() const {
return info_count > 0 && data_count > 0;
}
ServerSplitterInfo& SplitterContext::GetInfo(std::size_t i) {
ASSERT(i < info_count);
return infos.at(i);
}
const ServerSplitterInfo& SplitterContext::GetInfo(std::size_t i) const {
ASSERT(i < info_count);
return infos.at(i);
}
ServerSplitterDestinationData& SplitterContext::GetData(std::size_t i) {
ASSERT(i < data_count);
return datas.at(i);
}
const ServerSplitterDestinationData& SplitterContext::GetData(std::size_t i) const {
ASSERT(i < data_count);
return datas.at(i);
}
ServerSplitterDestinationData* SplitterContext::GetDestinationData(std::size_t info,
std::size_t data) {
ASSERT(info < info_count);
auto& cur_info = GetInfo(info);
return cur_info.GetData(data);
}
const ServerSplitterDestinationData* SplitterContext::GetDestinationData(std::size_t info,
std::size_t data) const {
ASSERT(info < info_count);
auto& cur_info = GetInfo(info);
return cur_info.GetData(data);
}
void SplitterContext::UpdateInternalState() {
if (data_count == 0) {
return;
}
for (auto& data : datas) {
data.UpdateInternalState();
}
}
std::size_t SplitterContext::GetInfoCount() const {
return info_count;
}
std::size_t SplitterContext::GetDataCount() const {
return data_count;
}
void SplitterContext::Setup(std::size_t _info_count, std::size_t _data_count,
bool is_splitter_bug_fixed) {
info_count = _info_count;
data_count = _data_count;
for (std::size_t i = 0; i < info_count; i++) {
auto& splitter = infos.emplace_back(static_cast<s32>(i));
splitter.InitializeInfos();
}
for (std::size_t i = 0; i < data_count; i++) {
datas.emplace_back(static_cast<s32>(i));
}
bug_fixed = is_splitter_bug_fixed;
}
bool SplitterContext::UpdateInfo(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_splitter_count) {
2020-07-25 03:32:05 +01:00
const auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
for (s32 i = 0; i < in_splitter_count; i++) {
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InInfoPrams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InInfoPrams header{};
std::memcpy(&header, input.data() + input_offset, sizeof(SplitterInfo::InInfoPrams));
// Logged as warning as these don't actually cause a bailout for some reason
if (header.magic != SplitterMagic::InfoHeader) {
LOG_ERROR(Audio, "Bad splitter data header");
break;
}
2020-10-21 03:07:39 +01:00
if (header.send_id < 0 || static_cast<std::size_t>(header.send_id) > info_count) {
LOG_ERROR(Audio, "Bad splitter data id");
break;
}
UpdateOffsets(sizeof(SplitterInfo::InInfoPrams));
2020-10-21 03:07:39 +01:00
auto& info = GetInfo(header.send_id);
if (!RecomposeDestination(info, header, input, input_offset)) {
LOG_ERROR(Audio, "Failed to recompose destination for splitter!");
return false;
}
const std::size_t read = info.Update(header);
bytes_read += read;
input_offset += read;
}
return true;
}
bool SplitterContext::UpdateData(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_data_count) {
2020-07-25 03:32:05 +01:00
const auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
for (s32 i = 0; i < in_data_count; i++) {
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InDestinationParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InDestinationParams header{};
std::memcpy(&header, input.data() + input_offset,
sizeof(SplitterInfo::InDestinationParams));
UpdateOffsets(sizeof(SplitterInfo::InDestinationParams));
// Logged as warning as these don't actually cause a bailout for some reason
if (header.magic != SplitterMagic::DataHeader) {
LOG_ERROR(Audio, "Bad splitter data header");
break;
}
2020-10-21 03:07:39 +01:00
if (header.splitter_id < 0 || static_cast<std::size_t>(header.splitter_id) > data_count) {
LOG_ERROR(Audio, "Bad splitter data id");
break;
}
2020-10-21 03:07:39 +01:00
GetData(header.splitter_id).Update(header);
}
return true;
}
bool SplitterContext::RecomposeDestination(ServerSplitterInfo& info,
SplitterInfo::InInfoPrams& header,
const std::vector<u8>& input,
const std::size_t& input_offset) {
// Clear our current destinations
auto* current_head = info.GetHead();
while (current_head != nullptr) {
auto next_head = current_head->GetNextDestination();
current_head->SetNextDestination(nullptr);
current_head = next_head;
}
info.SetHead(nullptr);
s32 size = header.length;
// If the splitter bug is present, calculate fixed size
if (!bug_fixed) {
if (info_count > 0) {
const auto factor = data_count / info_count;
size = std::min(header.length, static_cast<s32>(factor));
} else {
size = 0;
}
}
if (size < 1) {
LOG_ERROR(Audio, "Invalid splitter info size! size={:X}", size);
return true;
}
2020-10-21 03:07:39 +01:00
auto* start_head = &GetData(header.resource_id_base);
current_head = start_head;
2020-10-21 03:07:39 +01:00
std::vector<s32_le> resource_ids(size - 1);
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
resource_ids.size() * sizeof(s32_le))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(resource_ids.data(), input.data() + input_offset,
resource_ids.size() * sizeof(s32_le));
2020-10-21 03:07:39 +01:00
for (auto resource_id : resource_ids) {
auto* head = &GetData(resource_id);
current_head->SetNextDestination(head);
current_head = head;
}
info.SetHead(start_head);
info.SetHeadDepth(size);
return true;
}
NodeStates::NodeStates() = default;
NodeStates::~NodeStates() = default;
2020-07-25 03:32:05 +01:00
void NodeStates::Initialize(std::size_t node_count_) {
// Setup our work parameters
2020-07-25 03:32:05 +01:00
node_count = node_count_;
was_node_found.resize(node_count);
was_node_completed.resize(node_count);
index_list.resize(node_count);
index_stack.Reset(node_count * node_count);
}
bool NodeStates::Tsort(EdgeMatrix& edge_matrix) {
return DepthFirstSearch(edge_matrix);
}
std::size_t NodeStates::GetIndexPos() const {
return index_pos;
}
const std::vector<s32>& NodeStates::GetIndexList() const {
return index_list;
}
void NodeStates::PushTsortResult(s32 index) {
ASSERT(index < static_cast<s32>(node_count));
index_list[index_pos++] = index;
}
bool NodeStates::DepthFirstSearch(EdgeMatrix& edge_matrix) {
ResetState();
for (std::size_t i = 0; i < node_count; i++) {
const auto node_id = static_cast<s32>(i);
// If we don't have a state, send to our index stack for work
2020-10-21 03:07:39 +01:00
if (GetState(i) == NodeStates::State::NoState) {
index_stack.push(node_id);
}
// While we have work to do in our stack
while (index_stack.Count() > 0) {
// Get the current node
const auto current_stack_index = index_stack.top();
// Check if we've seen the node yet
2020-10-21 03:07:39 +01:00
const auto index_state = GetState(current_stack_index);
if (index_state == NodeStates::State::NoState) {
// Mark the node as seen
2020-10-21 03:07:39 +01:00
UpdateState(NodeStates::State::InFound, current_stack_index);
} else if (index_state == NodeStates::State::InFound) {
// We've seen this node before, mark it as completed
2020-10-21 03:07:39 +01:00
UpdateState(NodeStates::State::InCompleted, current_stack_index);
// Update our index list
PushTsortResult(current_stack_index);
// Pop the stack
index_stack.pop();
continue;
2020-10-21 03:07:39 +01:00
} else if (index_state == NodeStates::State::InCompleted) {
// If our node is already sorted, clear it
index_stack.pop();
continue;
}
const auto node_count = edge_matrix.GetNodeCount();
for (s32 j = 0; j < static_cast<s32>(node_count); j++) {
// Check if our node is connected to our edge matrix
if (!edge_matrix.Connected(current_stack_index, j)) {
continue;
}
// Check if our node exists
2020-10-21 03:07:39 +01:00
const auto node_state = GetState(j);
if (node_state == NodeStates::State::NoState) {
// Add more work
index_stack.push(j);
2020-10-21 03:07:39 +01:00
} else if (node_state == NodeStates::State::InFound) {
UNREACHABLE_MSG("Node start marked as found");
ResetState();
return false;
}
}
}
}
return true;
}
void NodeStates::ResetState() {
// Reset to the start of our index stack
index_pos = 0;
for (std::size_t i = 0; i < node_count; i++) {
// Mark all nodes as not found
was_node_found[i] = false;
// Mark all nodes as uncompleted
was_node_completed[i] = false;
// Mark all indexes as invalid
index_list[i] = -1;
}
}
2020-10-21 03:07:39 +01:00
void NodeStates::UpdateState(NodeStates::State state, std::size_t i) {
switch (state) {
2020-10-21 03:07:39 +01:00
case NodeStates::State::NoState:
was_node_found[i] = false;
was_node_completed[i] = false;
break;
2020-10-21 03:07:39 +01:00
case NodeStates::State::InFound:
was_node_found[i] = true;
was_node_completed[i] = false;
break;
2020-10-21 03:07:39 +01:00
case NodeStates::State::InCompleted:
was_node_found[i] = false;
was_node_completed[i] = true;
break;
}
}
NodeStates::State NodeStates::GetState(std::size_t i) {
ASSERT(i < node_count);
if (was_node_found[i]) {
// If our node exists in our found list
2020-10-21 03:07:39 +01:00
return NodeStates::State::InFound;
} else if (was_node_completed[i]) {
// If node is in the completed list
2020-10-21 03:07:39 +01:00
return NodeStates::State::InCompleted;
} else {
// If in neither
2020-10-21 03:07:39 +01:00
return NodeStates::State::NoState;
}
}
NodeStates::Stack::Stack() = default;
NodeStates::Stack::~Stack() = default;
void NodeStates::Stack::Reset(std::size_t size) {
// Mark our stack as empty
stack.resize(size);
stack_size = size;
stack_pos = 0;
std::fill(stack.begin(), stack.end(), 0);
}
void NodeStates::Stack::push(s32 val) {
ASSERT(stack_pos < stack_size);
stack[stack_pos++] = val;
}
std::size_t NodeStates::Stack::Count() const {
return stack_pos;
}
s32 NodeStates::Stack::top() const {
ASSERT(stack_pos > 0);
return stack[stack_pos - 1];
}
s32 NodeStates::Stack::pop() {
ASSERT(stack_pos > 0);
stack_pos--;
return stack[stack_pos];
}
EdgeMatrix::EdgeMatrix() = default;
EdgeMatrix::~EdgeMatrix() = default;
void EdgeMatrix::Initialize(std::size_t _node_count) {
node_count = _node_count;
edge_matrix.resize(node_count * node_count);
}
bool EdgeMatrix::Connected(s32 a, s32 b) {
return GetState(a, b);
}
void EdgeMatrix::Connect(s32 a, s32 b) {
SetState(a, b, true);
}
void EdgeMatrix::Disconnect(s32 a, s32 b) {
SetState(a, b, false);
}
void EdgeMatrix::RemoveEdges(s32 edge) {
for (std::size_t i = 0; i < node_count; i++) {
SetState(edge, static_cast<s32>(i), false);
}
}
std::size_t EdgeMatrix::GetNodeCount() const {
return node_count;
}
void EdgeMatrix::SetState(s32 a, s32 b, bool state) {
ASSERT(InRange(a, b));
2020-10-21 03:07:39 +01:00
edge_matrix.at(a * node_count + b) = state;
}
bool EdgeMatrix::GetState(s32 a, s32 b) {
ASSERT(InRange(a, b));
2020-10-21 03:07:39 +01:00
return edge_matrix.at(a * node_count + b);
}
bool EdgeMatrix::InRange(s32 a, s32 b) const {
2020-10-21 03:07:39 +01:00
const std::size_t pos = a * node_count + b;
return pos < (node_count * node_count);
}
} // namespace AudioCore