2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

gpu: Rewrite virtual memory manager using PageTable.

This commit is contained in:
bunnei 2019-03-03 23:54:16 -05:00
parent 241563d15c
commit 22d3dfbcd4
13 changed files with 497 additions and 228 deletions

View file

@ -16,6 +16,7 @@ void PageTable::Resize(std::size_t address_space_width_in_bits) {
pointers.resize(num_page_table_entries);
attributes.resize(num_page_table_entries);
backing_addr.resize(num_page_table_entries);
// The default is a 39-bit address space, which causes an initial 1GB allocation size. If the
// vector size is subsequently decreased (via resize), the vector might not automatically
@ -24,6 +25,7 @@ void PageTable::Resize(std::size_t address_space_width_in_bits) {
pointers.shrink_to_fit();
attributes.shrink_to_fit();
backing_addr.shrink_to_fit();
}
} // namespace Common

View file

@ -21,6 +21,8 @@ enum class PageType : u8 {
RasterizerCachedMemory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special,
/// Page is allocated for use.
Allocated,
};
struct SpecialRegion {
@ -66,7 +68,7 @@ struct PageTable {
* Contains MMIO handlers that back memory regions whose entries in the `attribute` vector is
* of type `Special`.
*/
boost::icl::interval_map<VAddr, std::set<SpecialRegion>> special_regions;
boost::icl::interval_map<u64, std::set<SpecialRegion>> special_regions;
/**
* Vector of fine grained page attributes. If it is set to any value other than `Memory`, then
@ -74,6 +76,8 @@ struct PageTable {
*/
std::vector<PageType> attributes;
std::vector<u64> backing_addr;
const std::size_t page_size_in_bits{};
};

View file

@ -173,16 +173,8 @@ u32 nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& ou
return 0;
}
auto& system_instance = Core::System::GetInstance();
// Remove this memory region from the rasterizer cache.
auto& gpu = system_instance.GPU();
auto cpu_addr = gpu.MemoryManager().GpuToCpuAddress(params.offset);
ASSERT(cpu_addr);
gpu.FlushAndInvalidateRegion(ToCacheAddr(Memory::GetPointer(*cpu_addr)), itr->second.size);
params.offset = gpu.MemoryManager().UnmapBuffer(params.offset, itr->second.size);
params.offset = Core::System::GetInstance().GPU().MemoryManager().UnmapBuffer(params.offset,
itr->second.size);
buffer_mappings.erase(itr->second.offset);
std::memcpy(output.data(), &params, output.size());

View file

@ -9,7 +9,6 @@
#include "common/bit_field.h"
#include "common/common_types.h"
#include "video_core/memory_manager.h"
namespace Tegra {

View file

@ -46,7 +46,7 @@ void KeplerMemory::ProcessData(u32 data) {
// contain a dirty surface that will have to be written back to memory.
const GPUVAddr address{regs.dest.Address() + state.write_offset * sizeof(u32)};
rasterizer.InvalidateRegion(ToCacheAddr(memory_manager.GetPointer(address)), sizeof(u32));
memory_manager.Write32(address, data);
memory_manager.Write<u32>(address, data);
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();

View file

@ -307,7 +307,7 @@ void Maxwell3D::ProcessQueryGet() {
// Write the current query sequence to the sequence address.
// TODO(Subv): Find out what happens if you use a long query type but mark it as a short
// query.
memory_manager.Write32(sequence_address, sequence);
memory_manager.Write<u32>(sequence_address, sequence);
} else {
// Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast
// GPU, this command may actually take a while to complete in real hardware due to GPU
@ -395,7 +395,7 @@ void Maxwell3D::ProcessCBData(u32 value) {
u8* ptr{memory_manager.GetPointer(address)};
rasterizer.InvalidateRegion(ToCacheAddr(ptr), sizeof(u32));
memory_manager.Write32(address, value);
memory_manager.Write<u32>(address, value);
dirty_flags.OnMemoryWrite();
@ -447,7 +447,7 @@ std::vector<Texture::FullTextureInfo> Maxwell3D::GetStageTextures(Regs::ShaderSt
for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset;
current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) {
const Texture::TextureHandle tex_handle{memory_manager.Read32(current_texture)};
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(current_texture)};
Texture::FullTextureInfo tex_info{};
// TODO(Subv): Use the shader to determine which textures are actually accessed.
@ -482,7 +482,7 @@ Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage,
ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size);
const Texture::TextureHandle tex_handle{memory_manager.Read32(tex_info_address)};
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(tex_info_address)};
Texture::FullTextureInfo tex_info{};
tex_info.index = static_cast<u32>(offset);

View file

@ -12,6 +12,7 @@
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
namespace Tegra {
@ -287,7 +288,7 @@ void GPU::ProcessSemaphoreTriggerMethod() {
block.timestamp = Core::System::GetInstance().CoreTiming().GetTicks();
memory_manager->WriteBlock(regs.smaphore_address.SmaphoreAddress(), &block, sizeof(block));
} else {
const u32 word{memory_manager->Read32(regs.smaphore_address.SmaphoreAddress())};
const u32 word{memory_manager->Read<u32>(regs.smaphore_address.SmaphoreAddress())};
if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) ||
(op == GpuSemaphoreOperation::AcquireGequal &&
static_cast<s32>(word - regs.semaphore_sequence) > 0) ||
@ -314,11 +315,11 @@ void GPU::ProcessSemaphoreTriggerMethod() {
}
void GPU::ProcessSemaphoreRelease() {
memory_manager->Write32(regs.smaphore_address.SmaphoreAddress(), regs.semaphore_release);
memory_manager->Write<u32>(regs.smaphore_address.SmaphoreAddress(), regs.semaphore_release);
}
void GPU::ProcessSemaphoreAcquire() {
const u32 word = memory_manager->Read32(regs.smaphore_address.SmaphoreAddress());
const u32 word = memory_manager->Read<u32>(regs.smaphore_address.SmaphoreAddress());
const auto value = regs.semaphore_acquire;
if (word != value) {
regs.acquire_active = true;

View file

@ -9,7 +9,6 @@
#include "common/common_types.h"
#include "core/hle/service/nvflinger/buffer_queue.h"
#include "video_core/dma_pusher.h"
#include "video_core/memory_manager.h"
using CacheAddr = std::uintptr_t;
inline CacheAddr ToCacheAddr(const void* host_ptr) {
@ -124,6 +123,8 @@ enum class EngineID {
MAXWELL_DMA_COPY_A = 0xB0B5,
};
class MemoryManager;
class GPU {
public:
explicit GPU(Core::System& system, VideoCore::RendererBase& renderer);
@ -244,9 +245,8 @@ protected:
private:
std::unique_ptr<Tegra::MemoryManager> memory_manager;
/// Mapping of command subchannels to their bound engine ids.
/// Mapping of command subchannels to their bound engine ids
std::array<EngineID, 8> bound_engines = {};
/// 3D engine
std::unique_ptr<Engines::Maxwell3D> maxwell_3d;
/// 2D engine

View file

@ -5,198 +5,164 @@
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
namespace Tegra {
MemoryManager::MemoryManager() {
// Mark the first page as reserved, so that 0 is not a valid GPUVAddr. Otherwise, games might
// try to use 0 as a valid address, which is also used to mean nullptr. This fixes a bug with
// Undertale using 0 for a render target.
PageSlot(0) = static_cast<u64>(PageStatus::Reserved);
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
Common::PageType::Unmapped);
page_table.Resize(address_space_width);
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = address_space_end;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
const std::optional<GPUVAddr> gpu_addr{FindFreeBlock(0, size, align, PageStatus::Unmapped)};
ASSERT_MSG(gpu_addr, "unable to find available GPU memory");
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
VAddr& slot{PageSlot(*gpu_addr + offset)};
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
slot = static_cast<u64>(PageStatus::Allocated);
}
return *gpu_addr;
}
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
VAddr& slot{PageSlot(gpu_addr + offset)};
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
slot = static_cast<u64>(PageStatus::Allocated);
}
const GPUVAddr gpu_addr{
FindFreeRegion(address_space_base, size, align, VirtualMemoryArea::Type::Unmapped)};
AllocateMemory(gpu_addr, 0, size);
return gpu_addr;
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
const std::optional<GPUVAddr> gpu_addr{FindFreeBlock(0, size, PAGE_SIZE, PageStatus::Unmapped)};
ASSERT_MSG(gpu_addr, "unable to find available GPU memory");
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
VAddr& slot{PageSlot(*gpu_addr + offset)};
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
slot = cpu_addr + offset;
}
const MappedRegion region{cpu_addr, *gpu_addr, size};
mapped_regions.push_back(region);
return *gpu_addr;
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
AllocateMemory(gpu_addr, 0, size);
return gpu_addr;
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & PAGE_MASK) == 0);
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) {
const GPUVAddr gpu_addr{
FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)};
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
cpu_addr);
return gpu_addr;
}
if (PageSlot(gpu_addr) != static_cast<u64>(PageStatus::Allocated)) {
// Page has been already mapped. In this case, we must find a new area of memory to use that
// is different than the specified one. Super Mario Odyssey hits this scenario when changing
// areas, but we do not want to overwrite the old pages.
// TODO(bunnei): We need to write a hardware test to confirm this behavior.
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0);
LOG_ERROR(HW_GPU, "attempting to map addr 0x{:016X}, which is not available!", gpu_addr);
const std::optional<GPUVAddr> new_gpu_addr{
FindFreeBlock(gpu_addr, size, PAGE_SIZE, PageStatus::Allocated)};
ASSERT_MSG(new_gpu_addr, "unable to find available GPU memory");
gpu_addr = *new_gpu_addr;
}
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
VAddr& slot{PageSlot(gpu_addr + offset)};
ASSERT(slot == static_cast<u64>(PageStatus::Allocated));
slot = cpu_addr + offset;
}
const MappedRegion region{cpu_addr, gpu_addr, size};
mapped_regions.push_back(region);
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
cpu_addr);
return gpu_addr;
}
GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & PAGE_MASK) == 0);
ASSERT((gpu_addr & page_mask) == 0);
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
VAddr& slot{PageSlot(gpu_addr + offset)};
const CacheAddr cache_addr{ToCacheAddr(GetPointer(gpu_addr))};
Core::System::GetInstance().Renderer().Rasterizer().FlushAndInvalidateRegion(cache_addr, size);
ASSERT(slot != static_cast<u64>(PageStatus::Allocated) &&
slot != static_cast<u64>(PageStatus::Unmapped));
UnmapRange(gpu_addr, ((size + page_mask) & ~page_mask));
slot = static_cast<u64>(PageStatus::Unmapped);
}
// Delete the region mappings that are contained within the unmapped region
mapped_regions.erase(std::remove_if(mapped_regions.begin(), mapped_regions.end(),
[&](const MappedRegion& region) {
return region.gpu_addr <= gpu_addr &&
region.gpu_addr + region.size < gpu_addr + size;
}),
mapped_regions.end());
return gpu_addr;
}
GPUVAddr MemoryManager::GetRegionEnd(GPUVAddr region_start) const {
for (const auto& region : mapped_regions) {
const GPUVAddr region_end{region.gpu_addr + region.size};
if (region_start >= region.gpu_addr && region_start < region_end) {
return region_end;
}
}
GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size, u64 align,
VirtualMemoryArea::Type vma_type) {
align = (align + page_mask) & ~page_mask;
// Find the first Free VMA.
const GPUVAddr base = region_start;
const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
if (vma.second.type != vma_type)
return false;
const VAddr vma_end = vma.second.base + vma.second.size;
return vma_end > base && vma_end >= base + size;
});
if (vma_handle == vma_map.end()) {
return {};
}
std::optional<GPUVAddr> MemoryManager::FindFreeBlock(GPUVAddr region_start, u64 size, u64 align,
PageStatus status) {
GPUVAddr gpu_addr{region_start};
u64 free_space{};
align = (align + PAGE_MASK) & ~PAGE_MASK;
while (gpu_addr + free_space < MAX_ADDRESS) {
if (PageSlot(gpu_addr + free_space) == static_cast<u64>(status)) {
free_space += PAGE_SIZE;
if (free_space >= size) {
return gpu_addr;
}
} else {
gpu_addr += free_space + PAGE_SIZE;
free_space = 0;
gpu_addr = Common::AlignUp(gpu_addr, align);
}
}
return {};
return std::max(base, vma_handle->second.base);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) {
const VAddr base_addr{PageSlot(gpu_addr)};
if (base_addr == static_cast<u64>(PageStatus::Allocated) ||
base_addr == static_cast<u64>(PageStatus::Unmapped) ||
base_addr == static_cast<u64>(PageStatus::Reserved)) {
return {};
VAddr cpu_addr = page_table.backing_addr[gpu_addr >> page_bits];
if (cpu_addr) {
return cpu_addr + (gpu_addr & page_mask);
}
return base_addr + (gpu_addr & PAGE_MASK);
return {};
}
u8 MemoryManager::Read8(GPUVAddr addr) {
return Memory::Read8(*GpuToCpuAddress(addr));
template <typename T>
T MemoryManager::Read(GPUVAddr vaddr) {
const u8* page_pointer = page_table.pointers[vaddr >> page_bits];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, &page_pointer[vaddr & page_mask], sizeof(T));
return value;
}
Common::PageType type = page_table.attributes[vaddr >> page_bits];
switch (type) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
return 0;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
default:
UNREACHABLE();
}
return {};
}
u16 MemoryManager::Read16(GPUVAddr addr) {
return Memory::Read16(*GpuToCpuAddress(addr));
template <typename T>
void MemoryManager::Write(GPUVAddr vaddr, T data) {
u8* page_pointer = page_table.pointers[vaddr >> page_bits];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & page_mask], &data, sizeof(T));
return;
}
Common::PageType type = page_table.attributes[vaddr >> page_bits];
switch (type) {
case Common::PageType::Unmapped:
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break;
default:
UNREACHABLE();
}
}
u32 MemoryManager::Read32(GPUVAddr addr) {
return Memory::Read32(*GpuToCpuAddress(addr));
}
u64 MemoryManager::Read64(GPUVAddr addr) {
return Memory::Read64(*GpuToCpuAddress(addr));
}
void MemoryManager::Write8(GPUVAddr addr, u8 data) {
Memory::Write8(*GpuToCpuAddress(addr), data);
}
void MemoryManager::Write16(GPUVAddr addr, u16 data) {
Memory::Write16(*GpuToCpuAddress(addr), data);
}
void MemoryManager::Write32(GPUVAddr addr, u32 data) {
Memory::Write32(*GpuToCpuAddress(addr), data);
}
void MemoryManager::Write64(GPUVAddr addr, u64 data) {
Memory::Write64(*GpuToCpuAddress(addr), data);
}
template u8 MemoryManager::Read<u8>(GPUVAddr addr);
template u16 MemoryManager::Read<u16>(GPUVAddr addr);
template u32 MemoryManager::Read<u32>(GPUVAddr addr);
template u64 MemoryManager::Read<u64>(GPUVAddr addr);
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr addr) {
return Memory::GetPointer(*GpuToCpuAddress(addr));
u8* page_pointer = page_table.pointers[addr >> page_bits];
if (page_pointer) {
return page_pointer + (addr & page_mask);
}
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
return {};
}
void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size) {
@ -210,13 +176,251 @@ void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t
std::memcpy(GetPointer(dest_addr), GetPointer(src_addr), size);
}
VAddr& MemoryManager::PageSlot(GPUVAddr gpu_addr) {
auto& block{page_table[(gpu_addr >> (PAGE_BITS + PAGE_TABLE_BITS)) & PAGE_TABLE_MASK]};
if (!block) {
block = std::make_unique<PageBlock>();
block->fill(static_cast<VAddr>(PageStatus::Unmapped));
void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr) {
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
(base + size) * page_size);
VAddr end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type);
if (memory == nullptr) {
std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory);
std::fill(page_table.backing_addr.begin() + base, page_table.backing_addr.begin() + end,
backing_addr);
} else {
while (base != end) {
page_table.pointers[base] = memory;
page_table.backing_addr[base] = backing_addr;
base += 1;
memory += page_size;
backing_addr += page_size;
}
}
}
void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
}
void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
}
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (type != next.type) {
return {};
}
if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
return {};
}
if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
return {};
}
return true;
}
MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
if (target >= address_space_end) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
u64 size) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle = CarveVMA(target, size);
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VirtualMemoryArea::Type::Allocated;
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
VAddr backing_addr) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle = CarveVMA(target, size);
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VirtualMemoryArea::Type::Mapped;
final_vma.backing_memory = memory;
final_vma.backing_addr = backing_addr;
UpdatePageTableForVMA(final_vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAIter MemoryManager::Unmap(VMAIter vma_handle) {
VirtualMemoryArea& vma = vma_handle->second;
vma.type = VirtualMemoryArea::Type::Allocated;
vma.offset = 0;
vma.backing_memory = nullptr;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
VMAIter vma = CarveVMARange(target, size);
const VAddr target_end = target + size;
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
}
MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
size);
ASSERT_MSG((base & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
base);
VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel
return {};
}
const VirtualMemoryArea& vma = vma_handle->second;
if (vma.type == VirtualMemoryArea::Type::Mapped) {
// Region is already allocated
return {};
}
const VAddr start_in_vma = base - vma.base;
const VAddr end_in_vma = start_in_vma + size;
if (end_in_vma < vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return vma_handle;
}
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
size);
ASSERT_MSG((target & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
target);
const VAddr target_end = target + size;
ASSERT(target_end >= target);
ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target));
const VMAIter i_end = vma_map.lower_bound(target_end);
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
})) {
return {};
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return begin_vma;
}
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VirtualMemoryArea::Type::Unmapped:
break;
case VirtualMemoryArea::Type::Allocated:
new_vma.offset += offset_in_vma;
break;
case VirtualMemoryArea::Type::Mapped:
new_vma.backing_memory += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VirtualMemoryArea::Type::Unmapped:
UnmapRegion(vma.base, vma.size);
break;
case VirtualMemoryArea::Type::Allocated:
MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
break;
case VirtualMemoryArea::Type::Mapped:
MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
break;
}
return (*block)[(gpu_addr >> PAGE_BITS) & PAGE_BLOCK_MASK];
}
} // namespace Tegra

View file

@ -1,79 +1,147 @@
// Copyright 2018 yuzu emulator team
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
#include <map>
#include <optional>
#include <vector>
#include "common/common_types.h"
#include "common/page_table.h"
namespace Tegra {
/**
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
* with homogeneous attributes across its extents. In this particular implementation each VMA is
* also backed by a single host memory allocation.
*/
struct VirtualMemoryArea {
enum class Type : u8 {
Unmapped,
Allocated,
Mapped,
};
/// Virtual base address of the region.
GPUVAddr base{};
/// Size of the region.
u64 size{};
/// Memory area mapping type.
Type type{Type::Unmapped};
/// CPU memory mapped address corresponding to this memory area.
VAddr backing_addr{};
/// Offset into the backing_memory the mapping starts from.
std::size_t offset{};
/// Pointer backing this VMA.
u8* backing_memory{};
/// Tests if this area can be merged to the right with `next`.
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
};
class MemoryManager final {
public:
MemoryManager();
GPUVAddr AllocateSpace(u64 size, u64 align);
GPUVAddr AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align);
GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size);
GPUVAddr MapBufferEx(GPUVAddr cpu_addr, u64 size);
GPUVAddr MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size);
GPUVAddr UnmapBuffer(GPUVAddr gpu_addr, u64 size);
GPUVAddr GetRegionEnd(GPUVAddr region_start) const;
std::optional<VAddr> GpuToCpuAddress(GPUVAddr gpu_addr);
static constexpr u64 PAGE_BITS = 16;
static constexpr u64 PAGE_SIZE = 1 << PAGE_BITS;
static constexpr u64 PAGE_MASK = PAGE_SIZE - 1;
template <typename T>
T Read(GPUVAddr vaddr);
u8 Read8(GPUVAddr addr);
u16 Read16(GPUVAddr addr);
u32 Read32(GPUVAddr addr);
u64 Read64(GPUVAddr addr);
void Write8(GPUVAddr addr, u8 data);
void Write16(GPUVAddr addr, u16 data);
void Write32(GPUVAddr addr, u32 data);
void Write64(GPUVAddr addr, u64 data);
template <typename T>
void Write(GPUVAddr vaddr, T data);
u8* GetPointer(GPUVAddr vaddr);
void ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size);
void WriteBlock(GPUVAddr dest_addr, const void* src_buffer, std::size_t size);
void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size);
void CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t size);
private:
enum class PageStatus : u64 {
Unmapped = 0xFFFFFFFFFFFFFFFFULL,
Allocated = 0xFFFFFFFFFFFFFFFEULL,
Reserved = 0xFFFFFFFFFFFFFFFDULL,
};
using VMAMap = std::map<GPUVAddr, VirtualMemoryArea>;
using VMAHandle = VMAMap::const_iterator;
using VMAIter = VMAMap::iterator;
std::optional<GPUVAddr> FindFreeBlock(GPUVAddr region_start, u64 size, u64 align,
PageStatus status);
VAddr& PageSlot(GPUVAddr gpu_addr);
void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr = 0);
void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr);
void UnmapRegion(GPUVAddr base, u64 size);
static constexpr u64 MAX_ADDRESS{0x10000000000ULL};
static constexpr u64 PAGE_TABLE_BITS{10};
static constexpr u64 PAGE_TABLE_SIZE{1 << PAGE_TABLE_BITS};
static constexpr u64 PAGE_TABLE_MASK{PAGE_TABLE_SIZE - 1};
static constexpr u64 PAGE_BLOCK_BITS{14};
static constexpr u64 PAGE_BLOCK_SIZE{1 << PAGE_BLOCK_BITS};
static constexpr u64 PAGE_BLOCK_MASK{PAGE_BLOCK_SIZE - 1};
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
VMAHandle FindVMA(GPUVAddr target) const;
using PageBlock = std::array<VAddr, PAGE_BLOCK_SIZE>;
std::array<std::unique_ptr<PageBlock>, PAGE_TABLE_SIZE> page_table{};
VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size);
struct MappedRegion {
VAddr cpu_addr;
GPUVAddr gpu_addr;
u64 size;
};
/**
* Maps an unmanaged host memory pointer at a given address.
*
* @param target The guest address to start the mapping at.
* @param memory The memory to be mapped.
* @param size Size of the mapping.
* @param state MemoryState tag to attach to the VMA.
*/
VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr);
std::vector<MappedRegion> mapped_regions;
/// Unmaps a range of addresses, splitting VMAs as necessary.
void UnmapRange(GPUVAddr target, u64 size);
/// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter);
/// Unmaps the given VMA.
VMAIter Unmap(VMAIter vma);
/**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking.
*/
VMAIter CarveVMA(GPUVAddr base, u64 size);
/**
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
* end of the range.
*/
VMAIter CarveVMARange(GPUVAddr base, u64 size);
/**
* Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side.
*/
VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
/**
* Checks for and merges the specified VMA with adjacent ones if possible.
* @returns the merged VMA or the original if no merging was possible.
*/
VMAIter MergeAdjacent(VMAIter vma);
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size, u64 align,
VirtualMemoryArea::Type vma_type);
private:
static constexpr u64 page_bits{16};
static constexpr u64 page_size{1 << page_bits};
static constexpr u64 page_mask{page_size - 1};
/// Address space in bits, this is fairly arbitrary but sufficiently large.
static constexpr u32 address_space_width = 39;
/// Start address for mapping, this is fairly arbitrary but must be non-zero.
static constexpr GPUVAddr address_space_base = 0x100000;
/// End of address space, based on address space in bits.
static constexpr GPUVAddr address_space_end = 1ULL << address_space_width;
Common::PageTable page_table{page_bits};
VMAMap vma_map;
};
} // namespace Tegra

View file

@ -9,7 +9,6 @@
#include "common/common_types.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace VideoCore {

View file

@ -76,8 +76,8 @@ GlobalRegion GlobalRegionCacheOpenGL::GetGlobalRegion(
const auto cbufs{gpu.Maxwell3D().state.shader_stages[static_cast<u64>(stage)]};
const auto addr{cbufs.const_buffers[global_region.GetCbufIndex()].address +
global_region.GetCbufOffset()};
const auto actual_addr{memory_manager.Read64(addr)};
const auto size{memory_manager.Read32(addr + 8)};
const auto actual_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)};
// Look up global region in the cache based on address
const auto& host_ptr{memory_manager.GetPointer(actual_addr)};

View file

@ -610,11 +610,11 @@ CachedSurface::CachedSurface(const SurfaceParams& params)
// check is necessary to prevent flushing from overwriting unmapped memory.
auto& memory_manager{Core::System::GetInstance().GPU().MemoryManager()};
const u64 max_size{memory_manager.GetRegionEnd(params.gpu_addr) - params.gpu_addr};
if (cached_size_in_bytes > max_size) {
LOG_ERROR(HW_GPU, "Surface size {} exceeds region size {}", params.size_in_bytes, max_size);
cached_size_in_bytes = max_size;
}
// const u64 max_size{memory_manager.GetRegionEnd(params.gpu_addr) - params.gpu_addr};
// if (cached_size_in_bytes > max_size) {
// LOG_ERROR(HW_GPU, "Surface size {} exceeds region size {}", params.size_in_bytes,
// max_size); cached_size_in_bytes = max_size;
//}
cpu_addr = *memory_manager.GpuToCpuAddress(params.gpu_addr);
}