2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Revert Coretiming PRs 8531 and 7454 (#8591)

This commit is contained in:
Maide 2022-07-28 00:47:06 +01:00 committed by GitHub
parent b7642cff36
commit 2e46110379
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 69 additions and 118 deletions

View file

@ -30,10 +30,6 @@ namespace Common {
#else
return _udiv128(r[1], r[0], d, &remainder);
#endif
#else
#ifdef __SIZEOF_INT128__
const auto product = static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b);
return static_cast<u64>(product / d);
#else
const u64 diva = a / d;
const u64 moda = a % d;
@ -41,7 +37,6 @@ namespace Common {
const u64 modb = b % d;
return diva * b + moda * divb + moda * modb / d;
#endif
#endif
}
// This function multiplies 2 u64 values and produces a u128 value;

View file

@ -75,8 +75,8 @@ NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequen
}
u64 NativeClock::GetRTSC() {
TimePoint current_time_point{};
TimePoint new_time_point{};
TimePoint current_time_point{};
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
do {

View file

@ -6,9 +6,7 @@
#include <string>
#include <tuple>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/thread.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
@ -44,10 +42,10 @@ CoreTiming::CoreTiming()
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance, size_t id) {
const std::string name = "yuzu:HostTiming_" + std::to_string(id);
MicroProfileOnThreadCreate(name.c_str());
Common::SetCurrentThreadName(name.c_str());
void CoreTiming::ThreadEntry(CoreTiming& instance) {
constexpr char name[] = "yuzu:HostTiming";
MicroProfileOnThreadCreate(name);
Common::SetCurrentThreadName(name);
Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
instance.on_thread_init();
instance.ThreadLoop();
@ -63,127 +61,100 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
-> std::optional<std::chrono::nanoseconds> { return std::nullopt; };
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
if (is_multicore) {
worker_threads.emplace_back(ThreadEntry, std::ref(*this), 0);
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
}
void CoreTiming::Shutdown() {
is_paused = true;
paused = true;
shutting_down = true;
std::atomic_thread_fence(std::memory_order_release);
event_cv.notify_all();
wait_pause_cv.notify_all();
for (auto& thread : worker_threads) {
thread.join();
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
}
worker_threads.clear();
pause_callbacks.clear();
ClearPendingEvents();
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused_) {
std::unique_lock main_lock(event_mutex);
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
return;
}
if (is_multicore) {
is_paused = is_paused_;
event_cv.notify_all();
if (!is_paused_) {
wait_pause_cv.notify_all();
}
}
paused_state.store(is_paused_, std::memory_order_relaxed);
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
if (!is_paused_) {
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
for (auto& cb : pause_callbacks) {
cb(is_paused_);
cb(is_paused);
}
}
void CoreTiming::SyncPause(bool is_paused_) {
std::unique_lock main_lock(event_mutex);
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
if (is_multicore) {
is_paused = is_paused_;
event_cv.notify_all();
if (!is_paused_) {
wait_pause_cv.notify_all();
}
}
paused_state.store(is_paused_, std::memory_order_relaxed);
if (is_multicore) {
if (is_paused_) {
wait_signal_cv.wait(main_lock, [this] { return pause_count == worker_threads.size(); });
} else {
wait_signal_cv.wait(main_lock, [this] { return pause_count == 0; });
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
}
event.Set();
while (paused_set != is_paused)
;
}
if (!is_paused_) {
if (!is_paused) {
pause_end_time = GetGlobalTimeNs().count();
}
for (auto& cb : pause_callbacks) {
cb(is_paused_);
cb(is_paused);
}
}
bool CoreTiming::IsRunning() const {
return !paused_state.load(std::memory_order_acquire);
return !paused_set;
}
bool CoreTiming::HasPendingEvents() const {
std::unique_lock main_lock(event_mutex);
return !event_queue.empty() || pending_events.load(std::memory_order_relaxed) != 0;
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data, bool absolute_time) {
{
std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
std::unique_lock main_lock(event_mutex);
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
event_queue.emplace_back(Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
pending_events.fetch_add(1, std::memory_order_relaxed);
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
if (is_multicore) {
event_cv.notify_one();
event_queue.emplace_back(
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
event.Set();
}
void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
std::chrono::nanoseconds resched_time,
const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data, bool absolute_time) {
std::unique_lock main_lock(event_mutex);
std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
event_queue.emplace_back(
Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()});
pending_events.fetch_add(1, std::memory_order_relaxed);
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
if (is_multicore) {
event_cv.notify_one();
}
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
std::unique_lock main_lock(event_mutex);
std::scoped_lock scope{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
@ -192,7 +163,6 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
pending_events.fetch_sub(1, std::memory_order_relaxed);
}
}
@ -232,12 +202,11 @@ u64 CoreTiming::GetClockTicks() const {
}
void CoreTiming::ClearPendingEvents() {
std::unique_lock main_lock(event_mutex);
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::unique_lock main_lock(event_mutex);
std::scoped_lock lock{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
@ -251,28 +220,27 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
}
void CoreTiming::RegisterPauseCallback(PauseCallback&& callback) {
std::unique_lock main_lock(event_mutex);
std::scoped_lock lock{basic_lock};
pause_callbacks.emplace_back(std::move(callback));
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
std::unique_lock main_lock(event_mutex);
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
if (const auto event_type{evt.type.lock()}) {
event_mutex.unlock();
basic_lock.unlock();
const auto new_schedule_time{event_type->callback(
evt.user_data, evt.time,
std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt.time})};
event_mutex.lock();
pending_events.fetch_sub(1, std::memory_order_relaxed);
basic_lock.lock();
if (evt.reschedule_time != 0) {
// If this event was scheduled into a pause, its time now is going to be way behind.
@ -285,9 +253,9 @@ std::optional<s64> CoreTiming::Advance() {
const auto next_schedule_time{new_schedule_time.has_value()
? new_schedule_time.value().count()
: evt.reschedule_time};
event_queue.emplace_back(
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
pending_events.fetch_add(1, std::memory_order_relaxed);
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
@ -304,34 +272,27 @@ std::optional<s64> CoreTiming::Advance() {
}
void CoreTiming::ThreadLoop() {
const auto predicate = [this] { return !event_queue.empty() || is_paused; };
has_started = true;
while (!shutting_down) {
while (!is_paused && !shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
if (*next_time > 0) {
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
std::unique_lock main_lock(event_mutex);
event_cv.wait_for(main_lock, next_time_ns, predicate);
event.WaitFor(next_time_ns);
}
} else {
std::unique_lock main_lock(event_mutex);
event_cv.wait(main_lock, predicate);
wait_set = true;
event.Wait();
}
wait_set = false;
}
std::unique_lock main_lock(event_mutex);
pause_count++;
if (pause_count == worker_threads.size()) {
clock->Pause(true);
wait_signal_cv.notify_all();
}
wait_pause_cv.wait(main_lock, [this] { return !is_paused || shutting_down; });
pause_count--;
if (pause_count == 0) {
clock->Pause(false);
wait_signal_cv.notify_all();
}
paused_set = true;
clock->Pause(true);
pause_event.Wait();
clock->Pause(false);
}
}

View file

@ -5,7 +5,6 @@
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <functional>
#include <memory>
#include <mutex>
@ -15,6 +14,7 @@
#include <vector>
#include "common/common_types.h"
#include "common/thread.h"
#include "common/wall_clock.h"
namespace Core::Timing {
@ -143,7 +143,7 @@ private:
/// Clear all pending events. This should ONLY be done on exit.
void ClearPendingEvents();
static void ThreadEntry(CoreTiming& instance, size_t id);
static void ThreadEntry(CoreTiming& instance);
void ThreadLoop();
std::unique_ptr<Common::WallClock> clock;
@ -156,24 +156,21 @@ private:
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
std::atomic<size_t> pending_events{};
std::shared_ptr<EventType> ev_lost;
Common::Event event{};
Common::Event pause_event{};
std::mutex basic_lock;
std::mutex advance_lock;
std::unique_ptr<std::thread> timer_thread;
std::atomic<bool> paused{};
std::atomic<bool> paused_set{};
std::atomic<bool> wait_set{};
std::atomic<bool> shutting_down{};
std::atomic<bool> has_started{};
std::function<void()> on_thread_init{};
std::vector<std::thread> worker_threads;
std::condition_variable event_cv;
std::condition_variable wait_pause_cv;
std::condition_variable wait_signal_cv;
mutable std::mutex event_mutex;
std::atomic<bool> paused_state{};
bool is_paused{};
bool shutting_down{};
bool is_multicore{};
size_t pause_count{};
s64 pause_end_time{};
/// Cycle timing

View file

@ -8,7 +8,6 @@
#include <chrono>
#include <cstdlib>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
@ -23,15 +22,14 @@ std::array<s64, 5> delays{};
std::bitset<CB_IDS.size()> callbacks_ran_flags;
u64 expected_callback = 0;
std::mutex control_mutex;
template <unsigned int IDX>
std::optional<std::chrono::nanoseconds> HostCallbackTemplate(std::uintptr_t user_data, s64 time,
std::chrono::nanoseconds ns_late) {
std::unique_lock<std::mutex> lk(control_mutex);
static_assert(IDX < CB_IDS.size(), "IDX out of range");
callbacks_ran_flags.set(IDX);
REQUIRE(CB_IDS[IDX] == user_data);
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
delays[IDX] = ns_late.count();
++expected_callback;
return std::nullopt;