2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

core_timing: Rename CoreTiming namespace to Core::Timing

Places all of the timing-related functionality under the existing Core
namespace to keep things consistent, rather than having the timing
utilities sitting in its own completely separate namespace.
This commit is contained in:
Lioncash 2019-02-12 12:32:15 -05:00
parent 1d98027a0e
commit 48d9d66dc5
35 changed files with 172 additions and 174 deletions

View file

@ -37,7 +37,7 @@ Stream::Stream(u32 sample_rate, Format format, ReleaseCallback&& release_callbac
: sample_rate{sample_rate}, format{format}, release_callback{std::move(release_callback)},
sink_stream{sink_stream}, name{std::move(name_)} {
release_event = CoreTiming::RegisterEvent(
release_event = Core::Timing::RegisterEvent(
name, [this](u64 userdata, int cycles_late) { ReleaseActiveBuffer(); });
}
@ -57,7 +57,7 @@ Stream::State Stream::GetState() const {
s64 Stream::GetBufferReleaseCycles(const Buffer& buffer) const {
const std::size_t num_samples{buffer.GetSamples().size() / GetNumChannels()};
return CoreTiming::usToCycles((static_cast<u64>(num_samples) * 1000000) / sample_rate);
return Core::Timing::usToCycles((static_cast<u64>(num_samples) * 1000000) / sample_rate);
}
static void VolumeAdjustSamples(std::vector<s16>& samples) {
@ -99,7 +99,8 @@ void Stream::PlayNextBuffer() {
sink_stream.EnqueueSamples(GetNumChannels(), active_buffer->GetSamples());
CoreTiming::ScheduleEventThreadsafe(GetBufferReleaseCycles(*active_buffer), release_event, {});
Core::Timing::ScheduleEventThreadsafe(GetBufferReleaseCycles(*active_buffer), release_event,
{});
}
void Stream::ReleaseActiveBuffer() {

View file

@ -13,7 +13,7 @@
#include "audio_core/buffer.h"
#include "common/common_types.h"
namespace CoreTiming {
namespace Core::Timing {
struct EventType;
}
@ -95,7 +95,7 @@ private:
Format format; ///< Format of the stream
ReleaseCallback release_callback; ///< Buffer release callback for the stream
State state{State::Stopped}; ///< Playback state of the stream
CoreTiming::EventType* release_event{}; ///< Core timing release event for the stream
Core::Timing::EventType* release_event{}; ///< Core timing release event for the stream
BufferPtr active_buffer; ///< Actively playing buffer in the stream
std::queue<BufferPtr> queued_buffers; ///< Buffers queued to be played in the stream
std::queue<BufferPtr> released_buffers; ///< Buffers recently released from the stream

View file

@ -112,14 +112,14 @@ public:
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
CoreTiming::AddTicks(amortized_ticks);
Timing::AddTicks(amortized_ticks);
num_interpreted_instructions = 0;
}
u64 GetTicksRemaining() override {
return std::max(CoreTiming::GetDowncount(), 0);
return std::max(Timing::GetDowncount(), 0);
}
u64 GetCNTPCT() override {
return CoreTiming::GetTicks();
return Timing::GetTicks();
}
ARM_Dynarmic& parent;

View file

@ -177,7 +177,7 @@ void ARM_Unicorn::Run() {
if (GDBStub::IsServerEnabled()) {
ExecuteInstructions(std::max(4000000, 0));
} else {
ExecuteInstructions(std::max(CoreTiming::GetDowncount(), 0));
ExecuteInstructions(std::max(Timing::GetDowncount(), 0));
}
}
@ -190,7 +190,7 @@ MICROPROFILE_DEFINE(ARM_Jit_Unicorn, "ARM JIT", "Unicorn", MP_RGB(255, 64, 64));
void ARM_Unicorn::ExecuteInstructions(int num_instructions) {
MICROPROFILE_SCOPE(ARM_Jit_Unicorn);
CHECKED(uc_emu_start(uc, GetPC(), 1ULL << 63, 0, num_instructions));
CoreTiming::AddTicks(num_instructions);
Timing::AddTicks(num_instructions);
if (GDBStub::IsServerEnabled()) {
if (last_bkpt_hit) {
uc_reg_write(uc, UC_ARM64_REG_PC, &last_bkpt.address);

View file

@ -94,7 +94,7 @@ struct System::Impl {
ResultStatus Init(System& system, Frontend::EmuWindow& emu_window) {
LOG_DEBUG(HW_Memory, "initialized OK");
CoreTiming::Init();
Timing::Init();
kernel.Initialize();
const auto current_time = std::chrono::duration_cast<std::chrono::seconds>(
@ -205,7 +205,7 @@ struct System::Impl {
// Shutdown kernel and core timing
kernel.Shutdown();
CoreTiming::Shutdown();
Timing::Shutdown();
// Close app loader
app_loader.reset();
@ -232,7 +232,7 @@ struct System::Impl {
}
PerfStatsResults GetAndResetPerfStats() {
return perf_stats.GetAndResetStats(CoreTiming::GetGlobalTimeUs());
return perf_stats.GetAndResetStats(Timing::GetGlobalTimeUs());
}
Kernel::KernelCore kernel;

View file

@ -93,14 +93,14 @@ void Cpu::RunLoop(bool tight_loop) {
if (IsMainCore()) {
// TODO(Subv): Only let CoreTiming idle if all 4 cores are idling.
CoreTiming::Idle();
CoreTiming::Advance();
Timing::Idle();
Timing::Advance();
}
PrepareReschedule();
} else {
if (IsMainCore()) {
CoreTiming::Advance();
Timing::Advance();
}
if (tight_loop) {

View file

@ -15,7 +15,7 @@
#include "common/threadsafe_queue.h"
#include "core/core_timing_util.h"
namespace CoreTiming {
namespace Core::Timing {
static s64 global_timer;
static int slice_length;
@ -242,4 +242,4 @@ int GetDowncount() {
return downcount;
}
} // namespace CoreTiming
} // namespace Core::Timing

View file

@ -22,7 +22,7 @@
#include <string>
#include "common/common_types.h"
namespace CoreTiming {
namespace Core::Timing {
struct EventType;
@ -92,4 +92,4 @@ std::chrono::microseconds GetGlobalTimeUs();
int GetDowncount();
} // namespace CoreTiming
} // namespace Core::Timing

View file

@ -8,7 +8,7 @@
#include <limits>
#include "common/logging/log.h"
namespace CoreTiming {
namespace Core::Timing {
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE;
@ -60,4 +60,4 @@ s64 nsToCycles(u64 ns) {
return (BASE_CLOCK_RATE * static_cast<s64>(ns)) / 1000000000;
}
} // namespace CoreTiming
} // namespace Core::Timing

View file

@ -6,7 +6,7 @@
#include "common/common_types.h"
namespace CoreTiming {
namespace Core::Timing {
// The below clock rate is based on Switch's clockspeed being widely known as 1.020GHz
// The exact value used is of course unverified.
@ -61,4 +61,4 @@ inline u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE;
}
} // namespace CoreTiming
} // namespace Core::Timing

View file

@ -124,7 +124,7 @@ struct KernelCore::Impl {
void InitializeThreads() {
thread_wakeup_event_type =
CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
Core::Timing::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
}
std::atomic<u32> next_object_id{0};
@ -137,7 +137,7 @@ struct KernelCore::Impl {
SharedPtr<ResourceLimit> system_resource_limit;
CoreTiming::EventType* thread_wakeup_event_type = nullptr;
Core::Timing::EventType* thread_wakeup_event_type = nullptr;
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future,
// allowing us to simply use a pool index or similar.
Kernel::HandleTable thread_wakeup_callback_handle_table;
@ -213,7 +213,7 @@ u64 KernelCore::CreateNewProcessID() {
return impl->next_process_id++;
}
CoreTiming::EventType* KernelCore::ThreadWakeupCallbackEventType() const {
Core::Timing::EventType* KernelCore::ThreadWakeupCallbackEventType() const {
return impl->thread_wakeup_event_type;
}

View file

@ -11,7 +11,7 @@
template <typename T>
class ResultVal;
namespace CoreTiming {
namespace Core::Timing {
struct EventType;
}
@ -89,7 +89,7 @@ private:
u64 CreateNewThreadID();
/// Retrieves the event type used for thread wakeup callbacks.
CoreTiming::EventType* ThreadWakeupCallbackEventType() const;
Core::Timing::EventType* ThreadWakeupCallbackEventType() const;
/// Provides a reference to the thread wakeup callback handle table.
Kernel::HandleTable& ThreadWakeupCallbackHandleTable();

View file

@ -111,7 +111,7 @@ void Scheduler::SwitchContext(Thread* new_thread) {
void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
const u64 prev_switch_ticks = last_context_switch_time;
const u64 most_recent_switch_ticks = CoreTiming::GetTicks();
const u64 most_recent_switch_ticks = Core::Timing::GetTicks();
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
if (thread != nullptr) {

View file

@ -927,9 +927,9 @@ static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id)
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();
out_ticks = thread_ticks + (CoreTiming::GetTicks() - prev_ctx_ticks);
out_ticks = thread_ticks + (Core::Timing::GetTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
out_ticks = CoreTiming::GetTicks() - prev_ctx_ticks;
out_ticks = Core::Timing::GetTicks() - prev_ctx_ticks;
}
*result = out_ticks;
@ -1546,10 +1546,10 @@ static ResultCode SignalToAddress(VAddr address, u32 type, s32 value, s32 num_to
static u64 GetSystemTick() {
LOG_TRACE(Kernel_SVC, "called");
const u64 result{CoreTiming::GetTicks()};
const u64 result{Core::Timing::GetTicks()};
// Advance time to defeat dumb games that busy-wait for the frame to end.
CoreTiming::AddTicks(400);
Core::Timing::AddTicks(400);
return result;
}

View file

@ -43,7 +43,7 @@ Thread::~Thread() = default;
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(), callback_handle);
Core::Timing::UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(), callback_handle);
kernel.ThreadWakeupCallbackHandleTable().Close(callback_handle);
callback_handle = 0;
@ -85,12 +85,13 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
// This function might be called from any thread so we have to be cautious and use the
// thread-safe version of ScheduleEvent.
CoreTiming::ScheduleEventThreadsafe(CoreTiming::nsToCycles(nanoseconds),
Core::Timing::ScheduleEventThreadsafe(Core::Timing::nsToCycles(nanoseconds),
kernel.ThreadWakeupCallbackEventType(), callback_handle);
}
void Thread::CancelWakeupTimer() {
CoreTiming::UnscheduleEventThreadsafe(kernel.ThreadWakeupCallbackEventType(), callback_handle);
Core::Timing::UnscheduleEventThreadsafe(kernel.ThreadWakeupCallbackEventType(),
callback_handle);
}
static std::optional<s32> GetNextProcessorId(u64 mask) {
@ -197,7 +198,7 @@ ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name
thread->stack_top = stack_top;
thread->tpidr_el0 = 0;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = CoreTiming::GetTicks();
thread->last_running_ticks = Core::Timing::GetTicks();
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask = 1ULL << processor_id;
@ -257,7 +258,7 @@ void Thread::SetStatus(ThreadStatus new_status) {
}
if (status == ThreadStatus::Running) {
last_running_ticks = CoreTiming::GetTicks();
last_running_ticks = Core::Timing::GetTicks();
}
status = new_status;

View file

@ -22,7 +22,7 @@ void Controller_DebugPad::OnInit() {}
void Controller_DebugPad::OnRelease() {}
void Controller_DebugPad::OnUpdate(u8* data, std::size_t size) {
shared_memory.header.timestamp = CoreTiming::GetTicks();
shared_memory.header.timestamp = Core::Timing::GetTicks();
shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) {

View file

@ -18,7 +18,7 @@ void Controller_Gesture::OnInit() {}
void Controller_Gesture::OnRelease() {}
void Controller_Gesture::OnUpdate(u8* data, std::size_t size) {
shared_memory.header.timestamp = CoreTiming::GetTicks();
shared_memory.header.timestamp = Core::Timing::GetTicks();
shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) {

View file

@ -20,7 +20,7 @@ void Controller_Keyboard::OnInit() {}
void Controller_Keyboard::OnRelease() {}
void Controller_Keyboard::OnUpdate(u8* data, std::size_t size) {
shared_memory.header.timestamp = CoreTiming::GetTicks();
shared_memory.header.timestamp = Core::Timing::GetTicks();
shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) {

View file

@ -18,7 +18,7 @@ void Controller_Mouse::OnInit() {}
void Controller_Mouse::OnRelease() {}
void Controller_Mouse::OnUpdate(u8* data, std::size_t size) {
shared_memory.header.timestamp = CoreTiming::GetTicks();
shared_memory.header.timestamp = Core::Timing::GetTicks();
shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) {

View file

@ -308,7 +308,7 @@ void Controller_NPad::OnUpdate(u8* data, std::size_t data_len) {
const auto& last_entry =
main_controller->npad[main_controller->common.last_entry_index];
main_controller->common.timestamp = CoreTiming::GetTicks();
main_controller->common.timestamp = Core::Timing::GetTicks();
main_controller->common.last_entry_index =
(main_controller->common.last_entry_index + 1) % 17;

View file

@ -22,7 +22,7 @@ void Controller_Stubbed::OnUpdate(u8* data, std::size_t size) {
}
CommonHeader header{};
header.timestamp = CoreTiming::GetTicks();
header.timestamp = Core::Timing::GetTicks();
header.total_entry_count = 17;
header.entry_count = 0;
header.last_entry_index = 0;

View file

@ -21,7 +21,7 @@ void Controller_Touchscreen::OnInit() {}
void Controller_Touchscreen::OnRelease() {}
void Controller_Touchscreen::OnUpdate(u8* data, std::size_t size) {
shared_memory.header.timestamp = CoreTiming::GetTicks();
shared_memory.header.timestamp = Core::Timing::GetTicks();
shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) {
@ -48,7 +48,7 @@ void Controller_Touchscreen::OnUpdate(u8* data, std::size_t size) {
touch_entry.diameter_x = Settings::values.touchscreen.diameter_x;
touch_entry.diameter_y = Settings::values.touchscreen.diameter_y;
touch_entry.rotation_angle = Settings::values.touchscreen.rotation_angle;
const u64 tick = CoreTiming::GetTicks();
const u64 tick = Core::Timing::GetTicks();
touch_entry.delta_time = tick - last_touch;
last_touch = tick;
touch_entry.finger = Settings::values.touchscreen.finger;

View file

@ -19,7 +19,7 @@ void Controller_XPad::OnRelease() {}
void Controller_XPad::OnUpdate(u8* data, std::size_t size) {
for (auto& xpad_entry : shared_memory.shared_memory_entries) {
xpad_entry.header.timestamp = CoreTiming::GetTicks();
xpad_entry.header.timestamp = Core::Timing::GetTicks();
xpad_entry.header.total_entry_count = 17;
if (!IsControllerActivated()) {

View file

@ -36,9 +36,9 @@ namespace Service::HID {
// Updating period for each HID device.
// TODO(ogniK): Find actual polling rate of hid
constexpr u64 pad_update_ticks = CoreTiming::BASE_CLOCK_RATE / 66;
constexpr u64 accelerometer_update_ticks = CoreTiming::BASE_CLOCK_RATE / 100;
constexpr u64 gyroscope_update_ticks = CoreTiming::BASE_CLOCK_RATE / 100;
constexpr u64 pad_update_ticks = Core::Timing::BASE_CLOCK_RATE / 66;
constexpr u64 accelerometer_update_ticks = Core::Timing::BASE_CLOCK_RATE / 100;
constexpr u64 gyroscope_update_ticks = Core::Timing::BASE_CLOCK_RATE / 100;
constexpr std::size_t SHARED_MEMORY_SIZE = 0x40000;
IAppletResource::IAppletResource() : ServiceFramework("IAppletResource") {
@ -73,14 +73,13 @@ IAppletResource::IAppletResource() : ServiceFramework("IAppletResource") {
GetController<Controller_Stubbed>(HidController::Unknown3).SetCommonHeaderOffset(0x5000);
// Register update callbacks
pad_update_event =
CoreTiming::RegisterEvent("HID::UpdatePadCallback", [this](u64 userdata, int cycles_late) {
UpdateControllers(userdata, cycles_late);
});
pad_update_event = Core::Timing::RegisterEvent(
"HID::UpdatePadCallback",
[this](u64 userdata, int cycles_late) { UpdateControllers(userdata, cycles_late); });
// TODO(shinyquagsire23): Other update callbacks? (accel, gyro?)
CoreTiming::ScheduleEvent(pad_update_ticks, pad_update_event);
Core::Timing::ScheduleEvent(pad_update_ticks, pad_update_event);
ReloadInputDevices();
}
@ -94,7 +93,7 @@ void IAppletResource::DeactivateController(HidController controller) {
}
IAppletResource ::~IAppletResource() {
CoreTiming::UnscheduleEvent(pad_update_event, 0);
Core::Timing::UnscheduleEvent(pad_update_event, 0);
}
void IAppletResource::GetSharedMemoryHandle(Kernel::HLERequestContext& ctx) {
@ -114,7 +113,7 @@ void IAppletResource::UpdateControllers(u64 userdata, int cycles_late) {
controller->OnUpdate(shared_mem->GetPointer(), SHARED_MEMORY_SIZE);
}
CoreTiming::ScheduleEvent(pad_update_ticks - cycles_late, pad_update_event);
Core::Timing::ScheduleEvent(pad_update_ticks - cycles_late, pad_update_event);
}
class IActiveVibrationDeviceList final : public ServiceFramework<IActiveVibrationDeviceList> {

View file

@ -7,7 +7,7 @@
#include "controllers/controller_base.h"
#include "core/hle/service/service.h"
namespace CoreTiming {
namespace Core::Timing {
struct EventType;
}
@ -66,7 +66,7 @@ private:
Kernel::SharedPtr<Kernel::SharedMemory> shared_mem;
CoreTiming::EventType* pad_update_event;
Core::Timing::EventType* pad_update_event;
std::array<std::unique_ptr<ControllerBase>, static_cast<size_t>(HidController::MaxControllers)>
controllers{};

View file

@ -98,7 +98,7 @@ void IRS::GetImageTransferProcessorState(Kernel::HLERequestContext& ctx) {
IPC::ResponseBuilder rb{ctx, 5};
rb.Push(RESULT_SUCCESS);
rb.PushRaw<u64>(CoreTiming::GetTicks());
rb.PushRaw<u64>(Core::Timing::GetTicks());
rb.PushRaw<u32>(0);
}

View file

@ -184,7 +184,7 @@ u32 nvhost_ctrl_gpu::GetGpuTime(const std::vector<u8>& input, std::vector<u8>& o
IoctlGetGpuTime params{};
std::memcpy(&params, input.data(), input.size());
params.gpu_time = CoreTiming::cyclesToNs(CoreTiming::GetTicks());
params.gpu_time = Core::Timing::cyclesToNs(Core::Timing::GetTicks());
std::memcpy(output.data(), &params, output.size());
return 0;
}

View file

@ -13,10 +13,6 @@
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/writable_event.h"
namespace CoreTiming {
struct EventType;
}
namespace Service::NVFlinger {
struct IGBPBuffer {

View file

@ -25,21 +25,21 @@
namespace Service::NVFlinger {
constexpr std::size_t SCREEN_REFRESH_RATE = 60;
constexpr u64 frame_ticks = static_cast<u64>(CoreTiming::BASE_CLOCK_RATE / SCREEN_REFRESH_RATE);
constexpr u64 frame_ticks = static_cast<u64>(Core::Timing::BASE_CLOCK_RATE / SCREEN_REFRESH_RATE);
NVFlinger::NVFlinger() {
// Schedule the screen composition events
composition_event =
CoreTiming::RegisterEvent("ScreenComposition", [this](u64 userdata, int cycles_late) {
Core::Timing::RegisterEvent("ScreenComposition", [this](u64 userdata, int cycles_late) {
Compose();
CoreTiming::ScheduleEvent(frame_ticks - cycles_late, composition_event);
Core::Timing::ScheduleEvent(frame_ticks - cycles_late, composition_event);
});
CoreTiming::ScheduleEvent(frame_ticks, composition_event);
Core::Timing::ScheduleEvent(frame_ticks, composition_event);
}
NVFlinger::~NVFlinger() {
CoreTiming::UnscheduleEvent(composition_event, 0);
Core::Timing::UnscheduleEvent(composition_event, 0);
}
void NVFlinger::SetNVDrvInstance(std::shared_ptr<Nvidia::Module> instance) {

View file

@ -14,7 +14,7 @@
#include "common/common_types.h"
#include "core/hle/kernel/object.h"
namespace CoreTiming {
namespace Core::Timing {
struct EventType;
}
@ -115,8 +115,8 @@ private:
/// layers.
u32 next_buffer_queue_id = 1;
/// CoreTiming event that handles screen composition.
CoreTiming::EventType* composition_event;
/// Event that handles screen composition.
Core::Timing::EventType* composition_event;
};
} // namespace Service::NVFlinger

View file

@ -106,8 +106,8 @@ private:
void GetCurrentTimePoint(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called");
SteadyClockTimePoint steady_clock_time_point{
CoreTiming::cyclesToMs(CoreTiming::GetTicks()) / 1000};
const SteadyClockTimePoint steady_clock_time_point{
Core::Timing::cyclesToMs(Core::Timing::GetTicks()) / 1000};
IPC::ResponseBuilder rb{ctx, (sizeof(SteadyClockTimePoint) / 4) + 2};
rb.Push(RESULT_SUCCESS);
rb.PushRaw(steady_clock_time_point);
@ -282,7 +282,7 @@ void Module::Interface::GetClockSnapshot(Kernel::HLERequestContext& ctx) {
}
const SteadyClockTimePoint steady_clock_time_point{
CoreTiming::cyclesToMs(CoreTiming::GetTicks()) / 1000, {}};
Core::Timing::cyclesToMs(Core::Timing::GetTicks()) / 1000, {}};
CalendarTime calendar_time{};
calendar_time.year = tm->tm_year + 1900;

View file

@ -31,10 +31,10 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
class ScopeInit final {
public:
ScopeInit() {
CoreTiming::Init();
Core::Timing::Init();
}
~ScopeInit() {
CoreTiming::Shutdown();
Core::Timing::Shutdown();
}
};
@ -44,37 +44,37 @@ static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0,
expected_callback = CB_IDS[idx];
lateness = expected_lateness;
CoreTiming::AddTicks(CoreTiming::GetDowncount() -
cpu_downcount); // Pretend we executed X cycles of instructions.
CoreTiming::Advance();
// Pretend we executed X cycles of instructions.
Core::Timing::AddTicks(Core::Timing::GetDowncount() - cpu_downcount);
Core::Timing::Advance();
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
REQUIRE(downcount == CoreTiming::GetDowncount());
REQUIRE(downcount == Core::Timing::GetDowncount());
}
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
Core::Timing::EventType* cb_a = Core::Timing::RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = Core::Timing::RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_c = Core::Timing::RegisterEvent("callbackC", CallbackTemplate<2>);
Core::Timing::EventType* cb_d = Core::Timing::RegisterEvent("callbackD", CallbackTemplate<3>);
Core::Timing::EventType* cb_e = Core::Timing::RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
CoreTiming::Advance();
Core::Timing::Advance();
// D -> B -> C -> A -> E
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == CoreTiming::GetDowncount());
Core::Timing::ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == Core::Timing::GetDowncount());
AdvanceAndCheck(3, 400);
AdvanceAndCheck(1, 300);
@ -86,36 +86,36 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
TEST_CASE("CoreTiming[Threadsave]", "[core]") {
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
Core::Timing::EventType* cb_a = Core::Timing::RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = Core::Timing::RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_c = Core::Timing::RegisterEvent("callbackC", CallbackTemplate<2>);
Core::Timing::EventType* cb_d = Core::Timing::RegisterEvent("callbackD", CallbackTemplate<3>);
Core::Timing::EventType* cb_e = Core::Timing::RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
CoreTiming::Advance();
Core::Timing::Advance();
// D -> B -> C -> A -> E
CoreTiming::ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]);
Core::Timing::ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(1000);
REQUIRE(1000 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]);
Core::Timing::ForceExceptionCheck(1000);
REQUIRE(1000 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(500);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]);
Core::Timing::ForceExceptionCheck(500);
REQUIRE(500 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(800);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]);
Core::Timing::ForceExceptionCheck(800);
REQUIRE(500 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(100);
REQUIRE(100 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]);
Core::Timing::ForceExceptionCheck(100);
REQUIRE(100 == Core::Timing::GetDowncount());
Core::Timing::ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(1200);
REQUIRE(100 == CoreTiming::GetDowncount());
Core::Timing::ForceExceptionCheck(1200);
REQUIRE(100 == Core::Timing::GetDowncount());
AdvanceAndCheck(3, 400);
AdvanceAndCheck(1, 300);
@ -143,42 +143,42 @@ TEST_CASE("CoreTiming[SharedSlot]", "[core]") {
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
Core::Timing::EventType* cb_a = Core::Timing::RegisterEvent("callbackA", FifoCallback<0>);
Core::Timing::EventType* cb_b = Core::Timing::RegisterEvent("callbackB", FifoCallback<1>);
Core::Timing::EventType* cb_c = Core::Timing::RegisterEvent("callbackC", FifoCallback<2>);
Core::Timing::EventType* cb_d = Core::Timing::RegisterEvent("callbackD", FifoCallback<3>);
Core::Timing::EventType* cb_e = Core::Timing::RegisterEvent("callbackE", FifoCallback<4>);
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
Core::Timing::ScheduleEvent(1000, cb_a, CB_IDS[0]);
Core::Timing::ScheduleEvent(1000, cb_b, CB_IDS[1]);
Core::Timing::ScheduleEvent(1000, cb_c, CB_IDS[2]);
Core::Timing::ScheduleEvent(1000, cb_d, CB_IDS[3]);
Core::Timing::ScheduleEvent(1000, cb_e, CB_IDS[4]);
// Enter slice 0
CoreTiming::Advance();
REQUIRE(1000 == CoreTiming::GetDowncount());
Core::Timing::Advance();
REQUIRE(1000 == Core::Timing::GetDowncount());
callbacks_ran_flags = 0;
counter = 0;
lateness = 0;
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance();
REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount());
Core::Timing::AddTicks(Core::Timing::GetDowncount());
Core::Timing::Advance();
REQUIRE(MAX_SLICE_LENGTH == Core::Timing::GetDowncount());
REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong());
}
TEST_CASE("CoreTiming[PredictableLateness]", "[core]") {
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_a = Core::Timing::RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = Core::Timing::RegisterEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0
CoreTiming::Advance();
Core::Timing::Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
Core::Timing::ScheduleEvent(100, cb_a, CB_IDS[0]);
Core::Timing::ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
@ -192,10 +192,11 @@ static void RescheduleCallback(u64 userdata, s64 cycles_late) {
REQUIRE(reschedules >= 0);
REQUIRE(lateness == cycles_late);
if (reschedules > 0)
CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata),
if (reschedules > 0) {
Core::Timing::ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata),
userdata);
}
}
} // namespace ChainSchedulingTest
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
@ -203,35 +204,35 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_rs =
CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
Core::Timing::EventType* cb_a = Core::Timing::RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = Core::Timing::RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_c = Core::Timing::RegisterEvent("callbackC", CallbackTemplate<2>);
Core::Timing::EventType* cb_rs =
Core::Timing::RegisterEvent("callbackReschedule", RescheduleCallback);
// Enter slice 0
CoreTiming::Advance();
Core::Timing::Advance();
CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
REQUIRE(800 == CoreTiming::GetDowncount());
Core::Timing::ScheduleEvent(800, cb_a, CB_IDS[0]);
Core::Timing::ScheduleEvent(1000, cb_b, CB_IDS[1]);
Core::Timing::ScheduleEvent(2200, cb_c, CB_IDS[2]);
Core::Timing::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
REQUIRE(800 == Core::Timing::GetDowncount());
reschedules = 3;
AdvanceAndCheck(0, 200); // cb_a
AdvanceAndCheck(1, 1000); // cb_b, cb_rs
REQUIRE(2 == reschedules);
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance(); // cb_rs
Core::Timing::AddTicks(Core::Timing::GetDowncount());
Core::Timing::Advance(); // cb_rs
REQUIRE(1 == reschedules);
REQUIRE(200 == CoreTiming::GetDowncount());
REQUIRE(200 == Core::Timing::GetDowncount());
AdvanceAndCheck(2, 800); // cb_c
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance(); // cb_rs
Core::Timing::AddTicks(Core::Timing::GetDowncount());
Core::Timing::Advance(); // cb_rs
REQUIRE(0 == reschedules);
REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount());
REQUIRE(MAX_SLICE_LENGTH == Core::Timing::GetDowncount());
}

View file

@ -317,7 +317,7 @@ void Maxwell3D::ProcessQueryGet() {
LongQueryResult query_result{};
query_result.value = result;
// TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming
query_result.timestamp = CoreTiming::GetTicks();
query_result.timestamp = Core::Timing::GetTicks();
Memory::WriteBlock(*address, &query_result, sizeof(query_result));
}
dirty_flags.OnMemoryWrite();

View file

@ -282,7 +282,7 @@ void GPU::ProcessSemaphoreTriggerMethod() {
block.sequence = regs.semaphore_sequence;
// TODO(Kmather73): Generate a real GPU timestamp and write it here instead of
// CoreTiming
block.timestamp = CoreTiming::GetTicks();
block.timestamp = Core::Timing::GetTicks();
Memory::WriteBlock(*address, &block, sizeof(block));
} else {
const auto address =

View file

@ -137,7 +137,7 @@ void RendererOpenGL::SwapBuffers(
render_window.PollEvents();
Core::System::GetInstance().FrameLimiter().DoFrameLimiting(CoreTiming::GetGlobalTimeUs());
Core::System::GetInstance().FrameLimiter().DoFrameLimiting(Core::Timing::GetGlobalTimeUs());
Core::System::GetInstance().GetPerfStats().BeginSystemFrame();
// Restore the rasterizer state