2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Pica: Add basic rasterizer.

This commit is contained in:
Tony Wasserka 2014-07-27 18:02:35 +02:00
parent 94aa9da562
commit 94d742fe17
7 changed files with 260 additions and 2 deletions

View file

@ -1,6 +1,7 @@
set(SRCS clipper.cpp
command_processor.cpp
primitive_assembly.cpp
rasterizer.cpp
utils.cpp
vertex_shader.cpp
video_core.cpp
@ -10,6 +11,7 @@ set(HEADERS clipper.h
command_processor.h
math.h
primitive_assembly.h
rasterizer.h
utils.h
video_core.h
renderer_base.h

View file

@ -6,6 +6,7 @@
#include "clipper.h"
#include "pica.h"
#include "rasterizer.h"
#include "vertex_shader.h"
namespace Pica {
@ -168,7 +169,7 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) {
vtx1.screenpos.x.ToFloat32(), vtx1.screenpos.y.ToFloat32(), vtx1.screenpos.z.ToFloat32(),
vtx2.screenpos.x.ToFloat32(), vtx2.screenpos.y.ToFloat32(), vtx2.screenpos.z.ToFloat32());
// TODO: Send triangle to rasterizer
Rasterizer::ProcessTriangle(vtx0, vtx1, vtx2);
}
}

View file

@ -94,7 +94,55 @@ struct Regs {
BitField<16, 16, u32> y;
} viewport_corner;
INSERT_PADDING_WORDS(0x197);
INSERT_PADDING_WORDS(0xa7);
struct {
enum ColorFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGBA5551 = 2,
RGB565 = 3,
RGBA4 = 4,
};
INSERT_PADDING_WORDS(0x6);
u32 depth_format;
u32 color_format;
INSERT_PADDING_WORDS(0x4);
u32 depth_buffer_address;
u32 color_buffer_address;
union {
// Apparently, the framebuffer width is stored as expected,
// while the height is stored as the actual height minus one.
// Hence, don't access these fields directly but use the accessors
// GetWidth() and GetHeight() instead.
BitField< 0, 11, u32> width;
BitField<12, 10, u32> height;
};
INSERT_PADDING_WORDS(0x1);
inline u32 GetColorBufferAddress() const {
return Memory::PhysicalToVirtualAddress(DecodeAddressRegister(color_buffer_address));
}
inline u32 GetDepthBufferAddress() const {
return Memory::PhysicalToVirtualAddress(DecodeAddressRegister(depth_buffer_address));
}
inline u32 GetWidth() const {
return width;
}
inline u32 GetHeight() const {
return height + 1;
}
} framebuffer;
INSERT_PADDING_WORDS(0xe0);
struct {
enum class Format : u64 {
@ -355,6 +403,7 @@ struct Regs {
ADD_FIELD(viewport_depth_range);
ADD_FIELD(viewport_depth_far_plane);
ADD_FIELD(viewport_corner);
ADD_FIELD(framebuffer);
ADD_FIELD(vertex_attributes);
ADD_FIELD(index_array);
ADD_FIELD(num_vertices);
@ -411,6 +460,7 @@ ASSERT_REG_POSITION(viewport_depth_far_plane, 0x4e);
ASSERT_REG_POSITION(vs_output_attributes[0], 0x50);
ASSERT_REG_POSITION(vs_output_attributes[1], 0x51);
ASSERT_REG_POSITION(viewport_corner, 0x68);
ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);
ASSERT_REG_POSITION(num_vertices, 0x228);

View file

@ -0,0 +1,180 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include "common/common_types.h"
#include "math.h"
#include "pica.h"
#include "rasterizer.h"
#include "vertex_shader.h"
namespace Pica {
namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress());
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
// Assuming RGBA8 format until actual framebuffer format handling is implemented
*(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
}
static u32 GetDepth(int x, int y) {
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
// Assuming 16-bit depth buffer format until actual format handling is implemented
return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2);
}
static void SetDepth(int x, int y, u16 value) {
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
// Assuming 16-bit depth buffer format until actual format handling is implemented
*(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
}
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2)
{
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 {
Fix12P4() {}
Fix12P4(u16 val) : val(val) {}
static u16 FracMask() { return 0xF; }
static u16 IntMask() { return (u16)~0xF; }
operator u16() const {
return val;
}
bool operator < (const Fix12P4& oth) const {
return (u16)*this < (u16)oth;
}
private:
u16 val;
};
// vertex positions in rasterizer coordinates
auto FloatToFix = [](float24 flt) {
return Fix12P4(flt.ToFloat32() * 16.0f);
};
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
};
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) };
// TODO: Proper scissor rect test!
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x = min_x & Fix12P4::IntMask();
min_y = min_y & Fix12P4::IntMask();
max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
const Math::Vec2<Fix12P4>& line1,
const Math::Vec2<Fix12P4>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vtx.y < line1.y;
} else {
// check if vertex is on our left => right side
// TODO: Not sure how likely this is to overflow
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
}
};
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
// TODO: Not sure if looping through x first might be faster
for (u16 y = min_y; y < max_y; y += 0x10) {
for (u16 x = min_x; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Cross(vec1, vec2).z;
};
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
int wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive
if (w0 < 0 || w1 < 0 || w2 < 0)
continue;
// Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a
// texture coordinate across two vertices, something simple like
// u = (u0*w0 + u1*w1)/(w0+w1)
// will not work. However, the attribute value divided by the
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
// in screenspace. Hence, we can linearly interpolate these two independently and
// calculate the interpolated attribute by dividing the results.
// I.e.
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
// u = u_over_w / one_over_w
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);
return interpolated_attr_over_w / interpolated_w_inverse;
};
Math::Vec4<u8> primary_color{
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
};
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
(float)v1.screenpos[2].ToFloat32() * w1 +
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
SetDepth(x >> 4, y >> 4, z);
DrawPixel(x >> 4, y >> 4, primary_color);
}
}
}
} // namespace Rasterizer
} // namespace Pica

View file

@ -0,0 +1,21 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
namespace Pica {
namespace VertexShader {
struct OutputVertex;
}
namespace Rasterizer {
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2);
} // namespace Rasterizer
} // namespace Pica

View file

@ -23,6 +23,7 @@
<ClCompile Include="clipper.cpp" />
<ClCompile Include="command_processor.cpp" />
<ClCompile Include="primitive_assembly.cpp" />
<ClCompile Include="rasterizer.cpp" />
<ClCompile Include="utils.cpp" />
<ClCompile Include="vertex_shader.cpp" />
<ClCompile Include="video_core.cpp" />
@ -34,6 +35,7 @@
<ClInclude Include="math.h" />
<ClInclude Include="pica.h" />
<ClInclude Include="primitive_assembly.h" />
<ClInclude Include="rasterizer.h" />
<ClInclude Include="renderer_base.h" />
<ClInclude Include="utils.h" />
<ClInclude Include="vertex_shader.h" />

View file

@ -12,6 +12,7 @@
<ClCompile Include="clipper.cpp" />
<ClCompile Include="command_processor.cpp" />
<ClCompile Include="primitive_assembly.cpp" />
<ClCompile Include="rasterizer.cpp" />
<ClCompile Include="utils.cpp" />
<ClCompile Include="vertex_shader.cpp" />
<ClCompile Include="video_core.cpp" />
@ -26,6 +27,7 @@
<ClInclude Include="math.h" />
<ClInclude Include="pica.h" />
<ClInclude Include="primitive_assembly.h" />
<ClInclude Include="rasterizer.h" />
<ClInclude Include="renderer_base.h" />
<ClInclude Include="utils.h" />
<ClInclude Include="vertex_shader.h" />