2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Merge pull request #2265 from FernandoS27/multilevelqueue

Replace old Thread Queue for a new Multi Level Queue
This commit is contained in:
bunnei 2019-03-28 21:41:40 -04:00 committed by GitHub
commit b404fcdf14
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 484 additions and 19 deletions

View file

@ -98,6 +98,7 @@ add_library(common STATIC
microprofile.h microprofile.h
microprofileui.h microprofileui.h
misc.cpp misc.cpp
multi_level_queue.h
page_table.cpp page_table.cpp
page_table.h page_table.h
param_package.cpp param_package.cpp

View file

@ -58,4 +58,43 @@ inline u64 CountLeadingZeroes64(u64 value) {
return __builtin_clzll(value); return __builtin_clzll(value);
} }
#endif #endif
#ifdef _MSC_VER
inline u32 CountTrailingZeroes32(u32 value) {
unsigned long trailing_zero = 0;
if (_BitScanForward(&trailing_zero, value) != 0) {
return trailing_zero;
}
return 32;
}
inline u64 CountTrailingZeroes64(u64 value) {
unsigned long trailing_zero = 0;
if (_BitScanForward64(&trailing_zero, value) != 0) {
return trailing_zero;
}
return 64;
}
#else
inline u32 CountTrailingZeroes32(u32 value) {
if (value == 0) {
return 32;
}
return __builtin_ctz(value);
}
inline u64 CountTrailingZeroes64(u64 value) {
if (value == 0) {
return 64;
}
return __builtin_ctzll(value);
}
#endif
} // namespace Common } // namespace Common

View file

@ -0,0 +1,337 @@
// Copyright 2019 TuxSH
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <iterator>
#include <list>
#include <utility>
#include "common/bit_util.h"
#include "common/common_types.h"
namespace Common {
/**
* A MultiLevelQueue is a type of priority queue which has the following characteristics:
* - iteratable through each of its elements.
* - back can be obtained.
* - O(1) add, lookup (both front and back)
* - discrete priorities and a max of 64 priorities (limited domain)
* This type of priority queue is normaly used for managing threads within an scheduler
*/
template <typename T, std::size_t Depth>
class MultiLevelQueue {
public:
using value_type = T;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using difference_type = typename std::pointer_traits<pointer>::difference_type;
using size_type = std::size_t;
template <bool is_constant>
class iterator_impl {
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = T;
using pointer = std::conditional_t<is_constant, T*, const T*>;
using reference = std::conditional_t<is_constant, const T&, T&>;
using difference_type = typename std::pointer_traits<pointer>::difference_type;
friend bool operator==(const iterator_impl& lhs, const iterator_impl& rhs) {
if (lhs.IsEnd() && rhs.IsEnd())
return true;
return std::tie(lhs.current_priority, lhs.it) == std::tie(rhs.current_priority, rhs.it);
}
friend bool operator!=(const iterator_impl& lhs, const iterator_impl& rhs) {
return !operator==(lhs, rhs);
}
reference operator*() const {
return *it;
}
pointer operator->() const {
return it.operator->();
}
iterator_impl& operator++() {
if (IsEnd()) {
return *this;
}
++it;
if (it == GetEndItForPrio()) {
u64 prios = mlq.used_priorities;
prios &= ~((1ULL << (current_priority + 1)) - 1);
if (prios == 0) {
current_priority = mlq.depth();
} else {
current_priority = CountTrailingZeroes64(prios);
it = GetBeginItForPrio();
}
}
return *this;
}
iterator_impl& operator--() {
if (IsEnd()) {
if (mlq.used_priorities != 0) {
current_priority = 63 - CountLeadingZeroes64(mlq.used_priorities);
it = GetEndItForPrio();
--it;
}
} else if (it == GetBeginItForPrio()) {
u64 prios = mlq.used_priorities;
prios &= (1ULL << current_priority) - 1;
if (prios != 0) {
current_priority = CountTrailingZeroes64(prios);
it = GetEndItForPrio();
--it;
}
} else {
--it;
}
return *this;
}
iterator_impl operator++(int) {
const iterator_impl v{*this};
++(*this);
return v;
}
iterator_impl operator--(int) {
const iterator_impl v{*this};
--(*this);
return v;
}
// allow implicit const->non-const
iterator_impl(const iterator_impl<false>& other)
: mlq(other.mlq), it(other.it), current_priority(other.current_priority) {}
iterator_impl(const iterator_impl<true>& other)
: mlq(other.mlq), it(other.it), current_priority(other.current_priority) {}
iterator_impl& operator=(const iterator_impl<false>& other) {
mlq = other.mlq;
it = other.it;
current_priority = other.current_priority;
return *this;
}
friend class iterator_impl<true>;
iterator_impl() = default;
private:
friend class MultiLevelQueue;
using container_ref =
std::conditional_t<is_constant, const MultiLevelQueue&, MultiLevelQueue&>;
using list_iterator = std::conditional_t<is_constant, typename std::list<T>::const_iterator,
typename std::list<T>::iterator>;
explicit iterator_impl(container_ref mlq, list_iterator it, u32 current_priority)
: mlq(mlq), it(it), current_priority(current_priority) {}
explicit iterator_impl(container_ref mlq, u32 current_priority)
: mlq(mlq), it(), current_priority(current_priority) {}
bool IsEnd() const {
return current_priority == mlq.depth();
}
list_iterator GetBeginItForPrio() const {
return mlq.levels[current_priority].begin();
}
list_iterator GetEndItForPrio() const {
return mlq.levels[current_priority].end();
}
container_ref mlq;
list_iterator it;
u32 current_priority;
};
using iterator = iterator_impl<false>;
using const_iterator = iterator_impl<true>;
void add(const T& element, u32 priority, bool send_back = true) {
if (send_back)
levels[priority].push_back(element);
else
levels[priority].push_front(element);
used_priorities |= 1ULL << priority;
}
void remove(const T& element, u32 priority) {
auto it = ListIterateTo(levels[priority], element);
if (it == levels[priority].end())
return;
levels[priority].erase(it);
if (levels[priority].empty()) {
used_priorities &= ~(1ULL << priority);
}
}
void adjust(const T& element, u32 old_priority, u32 new_priority, bool adjust_front = false) {
remove(element, old_priority);
add(element, new_priority, !adjust_front);
}
void adjust(const_iterator it, u32 old_priority, u32 new_priority, bool adjust_front = false) {
adjust(*it, old_priority, new_priority, adjust_front);
}
void transfer_to_front(const T& element, u32 priority, MultiLevelQueue& other) {
ListSplice(other.levels[priority], other.levels[priority].begin(), levels[priority],
ListIterateTo(levels[priority], element));
other.used_priorities |= 1ULL << priority;
if (levels[priority].empty()) {
used_priorities &= ~(1ULL << priority);
}
}
void transfer_to_front(const_iterator it, u32 priority, MultiLevelQueue& other) {
transfer_to_front(*it, priority, other);
}
void transfer_to_back(const T& element, u32 priority, MultiLevelQueue& other) {
ListSplice(other.levels[priority], other.levels[priority].end(), levels[priority],
ListIterateTo(levels[priority], element));
other.used_priorities |= 1ULL << priority;
if (levels[priority].empty()) {
used_priorities &= ~(1ULL << priority);
}
}
void transfer_to_back(const_iterator it, u32 priority, MultiLevelQueue& other) {
transfer_to_back(*it, priority, other);
}
void yield(u32 priority, std::size_t n = 1) {
ListShiftForward(levels[priority], n);
}
std::size_t depth() const {
return Depth;
}
std::size_t size(u32 priority) const {
return levels[priority].size();
}
std::size_t size() const {
u64 priorities = used_priorities;
std::size_t size = 0;
while (priorities != 0) {
const u64 current_priority = CountTrailingZeroes64(priorities);
size += levels[current_priority].size();
priorities &= ~(1ULL << current_priority);
}
return size;
}
bool empty() const {
return used_priorities == 0;
}
bool empty(u32 priority) const {
return (used_priorities & (1ULL << priority)) == 0;
}
u32 highest_priority_set(u32 max_priority = 0) const {
const u64 priorities =
max_priority == 0 ? used_priorities : (used_priorities & ~((1ULL << max_priority) - 1));
return priorities == 0 ? Depth : static_cast<u32>(CountTrailingZeroes64(priorities));
}
u32 lowest_priority_set(u32 min_priority = Depth - 1) const {
const u64 priorities = min_priority >= Depth - 1
? used_priorities
: (used_priorities & ((1ULL << (min_priority + 1)) - 1));
return priorities == 0 ? Depth : 63 - CountLeadingZeroes64(priorities);
}
const_iterator cbegin(u32 max_prio = 0) const {
const u32 priority = highest_priority_set(max_prio);
return priority == Depth ? cend()
: const_iterator{*this, levels[priority].cbegin(), priority};
}
const_iterator begin(u32 max_prio = 0) const {
return cbegin(max_prio);
}
iterator begin(u32 max_prio = 0) {
const u32 priority = highest_priority_set(max_prio);
return priority == Depth ? end() : iterator{*this, levels[priority].begin(), priority};
}
const_iterator cend(u32 min_prio = Depth - 1) const {
return min_prio == Depth - 1 ? const_iterator{*this, Depth} : cbegin(min_prio + 1);
}
const_iterator end(u32 min_prio = Depth - 1) const {
return cend(min_prio);
}
iterator end(u32 min_prio = Depth - 1) {
return min_prio == Depth - 1 ? iterator{*this, Depth} : begin(min_prio + 1);
}
T& front(u32 max_priority = 0) {
const u32 priority = highest_priority_set(max_priority);
return levels[priority == Depth ? 0 : priority].front();
}
const T& front(u32 max_priority = 0) const {
const u32 priority = highest_priority_set(max_priority);
return levels[priority == Depth ? 0 : priority].front();
}
T back(u32 min_priority = Depth - 1) {
const u32 priority = lowest_priority_set(min_priority); // intended
return levels[priority == Depth ? 63 : priority].back();
}
const T& back(u32 min_priority = Depth - 1) const {
const u32 priority = lowest_priority_set(min_priority); // intended
return levels[priority == Depth ? 63 : priority].back();
}
private:
using const_list_iterator = typename std::list<T>::const_iterator;
static void ListShiftForward(std::list<T>& list, const std::size_t shift = 1) {
if (shift >= list.size()) {
return;
}
const auto begin_range = list.begin();
const auto end_range = std::next(begin_range, shift);
list.splice(list.end(), list, begin_range, end_range);
}
static void ListSplice(std::list<T>& in_list, const_list_iterator position,
std::list<T>& out_list, const_list_iterator element) {
in_list.splice(position, out_list, element);
}
static const_list_iterator ListIterateTo(const std::list<T>& list, const T& element) {
auto it = list.cbegin();
while (it != list.cend() && *it != element) {
++it;
}
return it;
}
std::array<std::list<T>, Depth> levels;
u64 used_priorities = 0;
};
} // namespace Common

View file

@ -30,7 +30,7 @@ Scheduler::~Scheduler() {
bool Scheduler::HaveReadyThreads() const { bool Scheduler::HaveReadyThreads() const {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
return ready_queue.get_first() != nullptr; return !ready_queue.empty();
} }
Thread* Scheduler::GetCurrentThread() const { Thread* Scheduler::GetCurrentThread() const {
@ -46,22 +46,27 @@ Thread* Scheduler::PopNextReadyThread() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
if (thread && thread->GetStatus() == ThreadStatus::Running) { if (thread && thread->GetStatus() == ThreadStatus::Running) {
if (ready_queue.empty()) {
return thread;
}
// We have to do better than the current thread. // We have to do better than the current thread.
// This call returns null when that's not possible. // This call returns null when that's not possible.
next = ready_queue.pop_first_better(thread->GetPriority()); next = ready_queue.front();
if (!next) { if (next == nullptr || next->GetPriority() >= thread->GetPriority()) {
// Otherwise just keep going with the current thread
next = thread; next = thread;
} }
} else { } else {
next = ready_queue.pop_first(); if (ready_queue.empty()) {
return nullptr;
}
next = ready_queue.front();
} }
return next; return next;
} }
void Scheduler::SwitchContext(Thread* new_thread) { void Scheduler::SwitchContext(Thread* new_thread) {
Thread* const previous_thread = GetCurrentThread(); Thread* previous_thread = GetCurrentThread();
Process* const previous_process = system.Kernel().CurrentProcess(); Process* const previous_process = system.Kernel().CurrentProcess();
UpdateLastContextSwitchTime(previous_thread, previous_process); UpdateLastContextSwitchTime(previous_thread, previous_process);
@ -75,7 +80,7 @@ void Scheduler::SwitchContext(Thread* new_thread) {
if (previous_thread->GetStatus() == ThreadStatus::Running) { if (previous_thread->GetStatus() == ThreadStatus::Running) {
// This is only the case when a reschedule is triggered without the current thread // This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc) // yielding execution (i.e. an event triggered, system core time-sliced, etc)
ready_queue.push_front(previous_thread->GetPriority(), previous_thread); ready_queue.add(previous_thread, previous_thread->GetPriority(), false);
previous_thread->SetStatus(ThreadStatus::Ready); previous_thread->SetStatus(ThreadStatus::Ready);
} }
} }
@ -90,7 +95,7 @@ void Scheduler::SwitchContext(Thread* new_thread) {
current_thread = new_thread; current_thread = new_thread;
ready_queue.remove(new_thread->GetPriority(), new_thread); ready_queue.remove(new_thread, new_thread->GetPriority());
new_thread->SetStatus(ThreadStatus::Running); new_thread->SetStatus(ThreadStatus::Running);
auto* const thread_owner_process = current_thread->GetOwnerProcess(); auto* const thread_owner_process = current_thread->GetOwnerProcess();
@ -147,7 +152,6 @@ void Scheduler::AddThread(SharedPtr<Thread> thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
thread_list.push_back(std::move(thread)); thread_list.push_back(std::move(thread));
ready_queue.prepare(priority);
} }
void Scheduler::RemoveThread(Thread* thread) { void Scheduler::RemoveThread(Thread* thread) {
@ -161,33 +165,37 @@ void Scheduler::ScheduleThread(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
ASSERT(thread->GetStatus() == ThreadStatus::Ready); ASSERT(thread->GetStatus() == ThreadStatus::Ready);
ready_queue.push_back(priority, thread); ready_queue.add(thread, priority);
} }
void Scheduler::UnscheduleThread(Thread* thread, u32 priority) { void Scheduler::UnscheduleThread(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
ASSERT(thread->GetStatus() == ThreadStatus::Ready); ASSERT(thread->GetStatus() == ThreadStatus::Ready);
ready_queue.remove(priority, thread); ready_queue.remove(thread, priority);
} }
void Scheduler::SetThreadPriority(Thread* thread, u32 priority) { void Scheduler::SetThreadPriority(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
if (thread->GetPriority() == priority) {
return;
}
// If thread was ready, adjust queues // If thread was ready, adjust queues
if (thread->GetStatus() == ThreadStatus::Ready) if (thread->GetStatus() == ThreadStatus::Ready)
ready_queue.move(thread, thread->GetPriority(), priority); ready_queue.adjust(thread, thread->GetPriority(), priority);
else
ready_queue.prepare(priority);
} }
Thread* Scheduler::GetNextSuggestedThread(u32 core, u32 maximum_priority) const { Thread* Scheduler::GetNextSuggestedThread(u32 core, u32 maximum_priority) const {
std::lock_guard<std::mutex> lock(scheduler_mutex); std::lock_guard<std::mutex> lock(scheduler_mutex);
const u32 mask = 1U << core; const u32 mask = 1U << core;
return ready_queue.get_first_filter([mask, maximum_priority](Thread const* thread) { for (auto* thread : ready_queue) {
return (thread->GetAffinityMask() & mask) != 0 && thread->GetPriority() < maximum_priority; if ((thread->GetAffinityMask() & mask) != 0 && thread->GetPriority() < maximum_priority) {
}); return thread;
}
}
return nullptr;
} }
void Scheduler::YieldWithoutLoadBalancing(Thread* thread) { void Scheduler::YieldWithoutLoadBalancing(Thread* thread) {

View file

@ -7,7 +7,7 @@
#include <mutex> #include <mutex>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/thread_queue_list.h" #include "common/multi_level_queue.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/kernel/thread.h" #include "core/hle/kernel/thread.h"
@ -156,7 +156,7 @@ private:
std::vector<SharedPtr<Thread>> thread_list; std::vector<SharedPtr<Thread>> thread_list;
/// Lists only ready thread ids. /// Lists only ready thread ids.
Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST + 1> ready_queue; Common::MultiLevelQueue<Thread*, THREADPRIO_LOWEST + 1> ready_queue;
SharedPtr<Thread> current_thread = nullptr; SharedPtr<Thread> current_thread = nullptr;

View file

@ -1,5 +1,7 @@
add_executable(tests add_executable(tests
common/bit_field.cpp common/bit_field.cpp
common/bit_utils.cpp
common/multi_level_queue.cpp
common/param_package.cpp common/param_package.cpp
common/ring_buffer.cpp common/ring_buffer.cpp
core/arm/arm_test_common.cpp core/arm/arm_test_common.cpp

View file

@ -0,0 +1,23 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include <math.h>
#include "common/bit_util.h"
namespace Common {
TEST_CASE("BitUtils::CountTrailingZeroes", "[common]") {
REQUIRE(Common::CountTrailingZeroes32(0) == 32);
REQUIRE(Common::CountTrailingZeroes64(0) == 64);
REQUIRE(Common::CountTrailingZeroes32(9) == 0);
REQUIRE(Common::CountTrailingZeroes32(8) == 3);
REQUIRE(Common::CountTrailingZeroes32(0x801000) == 12);
REQUIRE(Common::CountTrailingZeroes64(9) == 0);
REQUIRE(Common::CountTrailingZeroes64(8) == 3);
REQUIRE(Common::CountTrailingZeroes64(0x801000) == 12);
REQUIRE(Common::CountTrailingZeroes64(0x801000000000UL) == 36);
}
} // namespace Common

View file

@ -0,0 +1,55 @@
// Copyright 2019 Yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include <math.h>
#include "common/common_types.h"
#include "common/multi_level_queue.h"
namespace Common {
TEST_CASE("MultiLevelQueue", "[common]") {
std::array<f32, 8> values = {0.0, 5.0, 1.0, 9.0, 8.0, 2.0, 6.0, 7.0};
Common::MultiLevelQueue<f32, 64> mlq;
REQUIRE(mlq.empty());
mlq.add(values[2], 2);
mlq.add(values[7], 7);
mlq.add(values[3], 3);
mlq.add(values[4], 4);
mlq.add(values[0], 0);
mlq.add(values[5], 5);
mlq.add(values[6], 6);
mlq.add(values[1], 1);
u32 index = 0;
bool all_set = true;
for (auto& f : mlq) {
all_set &= (f == values[index]);
index++;
}
REQUIRE(all_set);
REQUIRE(!mlq.empty());
f32 v = 8.0;
mlq.add(v, 2);
v = -7.0;
mlq.add(v, 2, false);
REQUIRE(mlq.front(2) == -7.0);
mlq.yield(2);
REQUIRE(mlq.front(2) == values[2]);
REQUIRE(mlq.back(2) == -7.0);
REQUIRE(mlq.empty(8));
v = 10.0;
mlq.add(v, 8);
mlq.adjust(v, 8, 9);
REQUIRE(mlq.front(9) == v);
REQUIRE(mlq.empty(8));
REQUIRE(!mlq.empty(9));
mlq.adjust(values[0], 0, 9);
REQUIRE(mlq.highest_priority_set() == 1);
REQUIRE(mlq.lowest_priority_set() == 9);
mlq.remove(values[1], 1);
REQUIRE(mlq.highest_priority_set() == 2);
REQUIRE(mlq.empty(1));
}
} // namespace Common