mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2024-07-04 23:31:19 +01:00
956e200f12
These are all unused and the Write() ones should arguably not even be in the interface. There are better ways to provide this if we ever need it (like iterators).
691 lines
20 KiB
C++
691 lines
20 KiB
C++
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
// Copyright 2014 Tony Wasserka
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the owner nor the names of its contributors may
|
|
// be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <type_traits>
|
|
|
|
namespace Math {
|
|
|
|
template <typename T>
|
|
class Vec2;
|
|
template <typename T>
|
|
class Vec3;
|
|
template <typename T>
|
|
class Vec4;
|
|
|
|
template <typename T>
|
|
static inline Vec2<T> MakeVec(const T& x, const T& y);
|
|
template <typename T>
|
|
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z);
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w);
|
|
|
|
template <typename T>
|
|
class Vec2 {
|
|
public:
|
|
T x;
|
|
T y;
|
|
|
|
Vec2() = default;
|
|
Vec2(const T& _x, const T& _y) : x(_x), y(_y) {}
|
|
|
|
template <typename T2>
|
|
Vec2<T2> Cast() const {
|
|
return Vec2<T2>((T2)x, (T2)y);
|
|
}
|
|
|
|
static Vec2 AssignToAll(const T& f) {
|
|
return Vec2<T>(f, f);
|
|
}
|
|
|
|
Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const {
|
|
return MakeVec(x + other.x, y + other.y);
|
|
}
|
|
void operator+=(const Vec2& other) {
|
|
x += other.x;
|
|
y += other.y;
|
|
}
|
|
Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const {
|
|
return MakeVec(x - other.x, y - other.y);
|
|
}
|
|
void operator-=(const Vec2& other) {
|
|
x -= other.x;
|
|
y -= other.y;
|
|
}
|
|
|
|
template <typename U = T>
|
|
Vec2<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const {
|
|
return MakeVec(-x, -y);
|
|
}
|
|
Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const {
|
|
return MakeVec(x * other.x, y * other.y);
|
|
}
|
|
template <typename V>
|
|
Vec2<decltype(T{} * V{})> operator*(const V& f) const {
|
|
return MakeVec(x * f, y * f);
|
|
}
|
|
template <typename V>
|
|
void operator*=(const V& f) {
|
|
*this = *this * f;
|
|
}
|
|
template <typename V>
|
|
Vec2<decltype(T{} / V{})> operator/(const V& f) const {
|
|
return MakeVec(x / f, y / f);
|
|
}
|
|
template <typename V>
|
|
void operator/=(const V& f) {
|
|
*this = *this / f;
|
|
}
|
|
|
|
T Length2() const {
|
|
return x * x + y * y;
|
|
}
|
|
|
|
// Only implemented for T=float
|
|
float Length() const;
|
|
void SetLength(const float l);
|
|
Vec2 WithLength(const float l) const;
|
|
float Distance2To(Vec2& other);
|
|
Vec2 Normalized() const;
|
|
float Normalize(); // returns the previous length, which is often useful
|
|
|
|
T& operator[](int i) // allow vector[1] = 3 (vector.y=3)
|
|
{
|
|
return *((&x) + i);
|
|
}
|
|
T operator[](const int i) const {
|
|
return *((&x) + i);
|
|
}
|
|
|
|
void SetZero() {
|
|
x = 0;
|
|
y = 0;
|
|
}
|
|
|
|
// Common aliases: UV (texel coordinates), ST (texture coordinates)
|
|
T& u() {
|
|
return x;
|
|
}
|
|
T& v() {
|
|
return y;
|
|
}
|
|
T& s() {
|
|
return x;
|
|
}
|
|
T& t() {
|
|
return y;
|
|
}
|
|
|
|
const T& u() const {
|
|
return x;
|
|
}
|
|
const T& v() const {
|
|
return y;
|
|
}
|
|
const T& s() const {
|
|
return x;
|
|
}
|
|
const T& t() const {
|
|
return y;
|
|
}
|
|
|
|
// swizzlers - create a subvector of specific components
|
|
const Vec2 yx() const {
|
|
return Vec2(y, x);
|
|
}
|
|
const Vec2 vu() const {
|
|
return Vec2(y, x);
|
|
}
|
|
const Vec2 ts() const {
|
|
return Vec2(y, x);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename V>
|
|
Vec2<T> operator*(const V& f, const Vec2<T>& vec) {
|
|
return Vec2<T>(f * vec.x, f * vec.y);
|
|
}
|
|
|
|
typedef Vec2<float> Vec2f;
|
|
|
|
template <>
|
|
inline float Vec2<float>::Length() const {
|
|
return std::sqrt(x * x + y * y);
|
|
}
|
|
|
|
template <>
|
|
inline float Vec2<float>::Normalize() {
|
|
float length = Length();
|
|
*this /= length;
|
|
return length;
|
|
}
|
|
|
|
template <typename T>
|
|
class Vec3 {
|
|
public:
|
|
T x;
|
|
T y;
|
|
T z;
|
|
|
|
Vec3() = default;
|
|
Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {}
|
|
|
|
template <typename T2>
|
|
Vec3<T2> Cast() const {
|
|
return MakeVec<T2>((T2)x, (T2)y, (T2)z);
|
|
}
|
|
|
|
// Only implemented for T=int and T=float
|
|
static Vec3 FromRGB(unsigned int rgb);
|
|
unsigned int ToRGB() const; // alpha bits set to zero
|
|
|
|
static Vec3 AssignToAll(const T& f) {
|
|
return MakeVec(f, f, f);
|
|
}
|
|
|
|
Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const {
|
|
return MakeVec(x + other.x, y + other.y, z + other.z);
|
|
}
|
|
void operator+=(const Vec3& other) {
|
|
x += other.x;
|
|
y += other.y;
|
|
z += other.z;
|
|
}
|
|
Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const {
|
|
return MakeVec(x - other.x, y - other.y, z - other.z);
|
|
}
|
|
void operator-=(const Vec3& other) {
|
|
x -= other.x;
|
|
y -= other.y;
|
|
z -= other.z;
|
|
}
|
|
|
|
template <typename U = T>
|
|
Vec3<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const {
|
|
return MakeVec(-x, -y, -z);
|
|
}
|
|
Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const {
|
|
return MakeVec(x * other.x, y * other.y, z * other.z);
|
|
}
|
|
template <typename V>
|
|
Vec3<decltype(T{} * V{})> operator*(const V& f) const {
|
|
return MakeVec(x * f, y * f, z * f);
|
|
}
|
|
template <typename V>
|
|
void operator*=(const V& f) {
|
|
*this = *this * f;
|
|
}
|
|
template <typename V>
|
|
Vec3<decltype(T{} / V{})> operator/(const V& f) const {
|
|
return MakeVec(x / f, y / f, z / f);
|
|
}
|
|
template <typename V>
|
|
void operator/=(const V& f) {
|
|
*this = *this / f;
|
|
}
|
|
|
|
T Length2() const {
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
// Only implemented for T=float
|
|
float Length() const;
|
|
void SetLength(const float l);
|
|
Vec3 WithLength(const float l) const;
|
|
float Distance2To(Vec3& other);
|
|
Vec3 Normalized() const;
|
|
float Normalize(); // returns the previous length, which is often useful
|
|
|
|
T& operator[](int i) // allow vector[2] = 3 (vector.z=3)
|
|
{
|
|
return *((&x) + i);
|
|
}
|
|
T operator[](const int i) const {
|
|
return *((&x) + i);
|
|
}
|
|
|
|
void SetZero() {
|
|
x = 0;
|
|
y = 0;
|
|
z = 0;
|
|
}
|
|
|
|
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
|
|
T& u() {
|
|
return x;
|
|
}
|
|
T& v() {
|
|
return y;
|
|
}
|
|
T& w() {
|
|
return z;
|
|
}
|
|
|
|
T& r() {
|
|
return x;
|
|
}
|
|
T& g() {
|
|
return y;
|
|
}
|
|
T& b() {
|
|
return z;
|
|
}
|
|
|
|
T& s() {
|
|
return x;
|
|
}
|
|
T& t() {
|
|
return y;
|
|
}
|
|
T& q() {
|
|
return z;
|
|
}
|
|
|
|
const T& u() const {
|
|
return x;
|
|
}
|
|
const T& v() const {
|
|
return y;
|
|
}
|
|
const T& w() const {
|
|
return z;
|
|
}
|
|
|
|
const T& r() const {
|
|
return x;
|
|
}
|
|
const T& g() const {
|
|
return y;
|
|
}
|
|
const T& b() const {
|
|
return z;
|
|
}
|
|
|
|
const T& s() const {
|
|
return x;
|
|
}
|
|
const T& t() const {
|
|
return y;
|
|
}
|
|
const T& q() const {
|
|
return z;
|
|
}
|
|
|
|
// swizzlers - create a subvector of specific components
|
|
// e.g. Vec2 uv() { return Vec2(x,y); }
|
|
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all
|
|
// component names (x<->r) and permutations (xy<->yx)
|
|
#define _DEFINE_SWIZZLER2(a, b, name) \
|
|
const Vec2<T> name() const { \
|
|
return Vec2<T>(a, b); \
|
|
}
|
|
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
|
|
_DEFINE_SWIZZLER2(a, b, a##b); \
|
|
_DEFINE_SWIZZLER2(a, b, a2##b2); \
|
|
_DEFINE_SWIZZLER2(a, b, a3##b3); \
|
|
_DEFINE_SWIZZLER2(a, b, a4##b4); \
|
|
_DEFINE_SWIZZLER2(b, a, b##a); \
|
|
_DEFINE_SWIZZLER2(b, a, b2##a2); \
|
|
_DEFINE_SWIZZLER2(b, a, b3##a3); \
|
|
_DEFINE_SWIZZLER2(b, a, b4##a4)
|
|
|
|
DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t);
|
|
DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q);
|
|
DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q);
|
|
#undef DEFINE_SWIZZLER2
|
|
#undef _DEFINE_SWIZZLER2
|
|
};
|
|
|
|
template <typename T, typename V>
|
|
Vec3<T> operator*(const V& f, const Vec3<T>& vec) {
|
|
return Vec3<T>(f * vec.x, f * vec.y, f * vec.z);
|
|
}
|
|
|
|
template <>
|
|
inline float Vec3<float>::Length() const {
|
|
return std::sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
template <>
|
|
inline Vec3<float> Vec3<float>::Normalized() const {
|
|
return *this / Length();
|
|
}
|
|
|
|
template <>
|
|
inline float Vec3<float>::Normalize() {
|
|
float length = Length();
|
|
*this /= length;
|
|
return length;
|
|
}
|
|
|
|
typedef Vec3<float> Vec3f;
|
|
|
|
template <typename T>
|
|
class Vec4 {
|
|
public:
|
|
T x;
|
|
T y;
|
|
T z;
|
|
T w;
|
|
|
|
Vec4() = default;
|
|
Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {}
|
|
|
|
template <typename T2>
|
|
Vec4<T2> Cast() const {
|
|
return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w);
|
|
}
|
|
|
|
// Only implemented for T=int and T=float
|
|
static Vec4 FromRGBA(unsigned int rgba);
|
|
unsigned int ToRGBA() const;
|
|
|
|
static Vec4 AssignToAll(const T& f) {
|
|
return Vec4<T>(f, f, f, f);
|
|
}
|
|
|
|
Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const {
|
|
return MakeVec(x + other.x, y + other.y, z + other.z, w + other.w);
|
|
}
|
|
void operator+=(const Vec4& other) {
|
|
x += other.x;
|
|
y += other.y;
|
|
z += other.z;
|
|
w += other.w;
|
|
}
|
|
Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const {
|
|
return MakeVec(x - other.x, y - other.y, z - other.z, w - other.w);
|
|
}
|
|
void operator-=(const Vec4& other) {
|
|
x -= other.x;
|
|
y -= other.y;
|
|
z -= other.z;
|
|
w -= other.w;
|
|
}
|
|
|
|
template <typename U = T>
|
|
Vec4<std::enable_if_t<std::is_signed<U>::value, U>> operator-() const {
|
|
return MakeVec(-x, -y, -z, -w);
|
|
}
|
|
Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const {
|
|
return MakeVec(x * other.x, y * other.y, z * other.z, w * other.w);
|
|
}
|
|
template <typename V>
|
|
Vec4<decltype(T{} * V{})> operator*(const V& f) const {
|
|
return MakeVec(x * f, y * f, z * f, w * f);
|
|
}
|
|
template <typename V>
|
|
void operator*=(const V& f) {
|
|
*this = *this * f;
|
|
}
|
|
template <typename V>
|
|
Vec4<decltype(T{} / V{})> operator/(const V& f) const {
|
|
return MakeVec(x / f, y / f, z / f, w / f);
|
|
}
|
|
template <typename V>
|
|
void operator/=(const V& f) {
|
|
*this = *this / f;
|
|
}
|
|
|
|
T Length2() const {
|
|
return x * x + y * y + z * z + w * w;
|
|
}
|
|
|
|
// Only implemented for T=float
|
|
float Length() const;
|
|
void SetLength(const float l);
|
|
Vec4 WithLength(const float l) const;
|
|
float Distance2To(Vec4& other);
|
|
Vec4 Normalized() const;
|
|
float Normalize(); // returns the previous length, which is often useful
|
|
|
|
T& operator[](int i) // allow vector[2] = 3 (vector.z=3)
|
|
{
|
|
return *((&x) + i);
|
|
}
|
|
T operator[](const int i) const {
|
|
return *((&x) + i);
|
|
}
|
|
|
|
void SetZero() {
|
|
x = 0;
|
|
y = 0;
|
|
z = 0;
|
|
w = 0;
|
|
}
|
|
|
|
// Common alias: RGBA (colors)
|
|
T& r() {
|
|
return x;
|
|
}
|
|
T& g() {
|
|
return y;
|
|
}
|
|
T& b() {
|
|
return z;
|
|
}
|
|
T& a() {
|
|
return w;
|
|
}
|
|
|
|
const T& r() const {
|
|
return x;
|
|
}
|
|
const T& g() const {
|
|
return y;
|
|
}
|
|
const T& b() const {
|
|
return z;
|
|
}
|
|
const T& a() const {
|
|
return w;
|
|
}
|
|
|
|
// Swizzlers - Create a subvector of specific components
|
|
// e.g. Vec2 uv() { return Vec2(x,y); }
|
|
|
|
// _DEFINE_SWIZZLER2 defines a single such function
|
|
// DEFINE_SWIZZLER2_COMP1 defines one-component functions for all component names (x<->r)
|
|
// DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and
|
|
// permutations (xy<->yx)
|
|
#define _DEFINE_SWIZZLER2(a, b, name) \
|
|
const Vec2<T> name() const { \
|
|
return Vec2<T>(a, b); \
|
|
}
|
|
#define DEFINE_SWIZZLER2_COMP1(a, a2) \
|
|
_DEFINE_SWIZZLER2(a, a, a##a); \
|
|
_DEFINE_SWIZZLER2(a, a, a2##a2)
|
|
#define DEFINE_SWIZZLER2_COMP2(a, b, a2, b2) \
|
|
_DEFINE_SWIZZLER2(a, b, a##b); \
|
|
_DEFINE_SWIZZLER2(a, b, a2##b2); \
|
|
_DEFINE_SWIZZLER2(b, a, b##a); \
|
|
_DEFINE_SWIZZLER2(b, a, b2##a2)
|
|
|
|
DEFINE_SWIZZLER2_COMP2(x, y, r, g);
|
|
DEFINE_SWIZZLER2_COMP2(x, z, r, b);
|
|
DEFINE_SWIZZLER2_COMP2(x, w, r, a);
|
|
DEFINE_SWIZZLER2_COMP2(y, z, g, b);
|
|
DEFINE_SWIZZLER2_COMP2(y, w, g, a);
|
|
DEFINE_SWIZZLER2_COMP2(z, w, b, a);
|
|
DEFINE_SWIZZLER2_COMP1(x, r);
|
|
DEFINE_SWIZZLER2_COMP1(y, g);
|
|
DEFINE_SWIZZLER2_COMP1(z, b);
|
|
DEFINE_SWIZZLER2_COMP1(w, a);
|
|
#undef DEFINE_SWIZZLER2_COMP1
|
|
#undef DEFINE_SWIZZLER2_COMP2
|
|
#undef _DEFINE_SWIZZLER2
|
|
|
|
#define _DEFINE_SWIZZLER3(a, b, c, name) \
|
|
const Vec3<T> name() const { \
|
|
return Vec3<T>(a, b, c); \
|
|
}
|
|
#define DEFINE_SWIZZLER3_COMP1(a, a2) \
|
|
_DEFINE_SWIZZLER3(a, a, a, a##a##a); \
|
|
_DEFINE_SWIZZLER3(a, a, a, a2##a2##a2)
|
|
#define DEFINE_SWIZZLER3_COMP3(a, b, c, a2, b2, c2) \
|
|
_DEFINE_SWIZZLER3(a, b, c, a##b##c); \
|
|
_DEFINE_SWIZZLER3(a, c, b, a##c##b); \
|
|
_DEFINE_SWIZZLER3(b, a, c, b##a##c); \
|
|
_DEFINE_SWIZZLER3(b, c, a, b##c##a); \
|
|
_DEFINE_SWIZZLER3(c, a, b, c##a##b); \
|
|
_DEFINE_SWIZZLER3(c, b, a, c##b##a); \
|
|
_DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \
|
|
_DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \
|
|
_DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
|
|
_DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
|
|
_DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
|
|
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2)
|
|
|
|
DEFINE_SWIZZLER3_COMP3(x, y, z, r, g, b);
|
|
DEFINE_SWIZZLER3_COMP3(x, y, w, r, g, a);
|
|
DEFINE_SWIZZLER3_COMP3(x, z, w, r, b, a);
|
|
DEFINE_SWIZZLER3_COMP3(y, z, w, g, b, a);
|
|
DEFINE_SWIZZLER3_COMP1(x, r);
|
|
DEFINE_SWIZZLER3_COMP1(y, g);
|
|
DEFINE_SWIZZLER3_COMP1(z, b);
|
|
DEFINE_SWIZZLER3_COMP1(w, a);
|
|
#undef DEFINE_SWIZZLER3_COMP1
|
|
#undef DEFINE_SWIZZLER3_COMP3
|
|
#undef _DEFINE_SWIZZLER3
|
|
};
|
|
|
|
template <typename T, typename V>
|
|
Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) {
|
|
return MakeVec(f * vec.x, f * vec.y, f * vec.z, f * vec.w);
|
|
}
|
|
|
|
typedef Vec4<float> Vec4f;
|
|
|
|
template <typename T>
|
|
static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) {
|
|
return a.x * b.x + a.y * b.y;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) {
|
|
return MakeVec(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
// linear interpolation via float: 0.0=begin, 1.0=end
|
|
template <typename X>
|
|
static inline decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end,
|
|
const float t) {
|
|
return begin * (1.f - t) + end * t;
|
|
}
|
|
|
|
// linear interpolation via int: 0=begin, base=end
|
|
template <typename X, int base>
|
|
static inline decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin, const X& end,
|
|
const int t) {
|
|
return (begin * (base - t) + end * t) / base;
|
|
}
|
|
|
|
// bilinear interpolation. s is for interpolating x00-x01 and x10-x11, and t is for the second
|
|
// interpolation.
|
|
template <typename X>
|
|
inline auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x11, const float s,
|
|
const float t) {
|
|
auto y0 = Lerp(x00, x01, s);
|
|
auto y1 = Lerp(x10, x11, s);
|
|
return Lerp(y0, y1, t);
|
|
}
|
|
|
|
// Utility vector factories
|
|
template <typename T>
|
|
static inline Vec2<T> MakeVec(const T& x, const T& y) {
|
|
return Vec2<T>{x, y};
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z) {
|
|
return Vec3<T>{x, y, z};
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) {
|
|
return MakeVec(x, y, zw[0], zw[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) {
|
|
return MakeVec(xy[0], xy[1], z);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) {
|
|
return MakeVec(x, yz[0], yz[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) {
|
|
return Vec4<T>{x, y, z, w};
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) {
|
|
return MakeVec(xy[0], xy[1], z, w);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) {
|
|
return MakeVec(x, yz[0], yz[1], w);
|
|
}
|
|
|
|
// NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
|
|
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
|
|
// out soon enough due to misuse of the returned structure.
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) {
|
|
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) {
|
|
return MakeVec(xyz[0], xyz[1], xyz[2], w);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
|
|
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
|
|
}
|
|
|
|
} // namespace Math
|