2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00
yuzu/src/core/hle/kernel/event.cpp
Lioncash 0cbcd6ec9a kernel: Eliminate kernel global state
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.

This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.

This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.

The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
2018-08-28 22:31:51 -04:00

53 lines
1.2 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include "common/assert.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/thread.h"
namespace Kernel {
Event::Event(KernelCore& kernel) : WaitObject{kernel} {}
Event::~Event() = default;
SharedPtr<Event> Event::Create(KernelCore& kernel, ResetType reset_type, std::string name) {
SharedPtr<Event> evt(new Event(kernel));
evt->signaled = false;
evt->reset_type = reset_type;
evt->name = std::move(name);
return evt;
}
bool Event::ShouldWait(Thread* thread) const {
return !signaled;
}
void Event::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
if (reset_type == ResetType::OneShot)
signaled = false;
}
void Event::Signal() {
signaled = true;
WakeupAllWaitingThreads();
}
void Event::Clear() {
signaled = false;
}
void Event::WakeupAllWaitingThreads() {
WaitObject::WakeupAllWaitingThreads();
if (reset_type == ResetType::Pulse)
signaled = false;
}
} // namespace Kernel