1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2025-01-25 15:43:50 +00:00
hekate/bdk/sec/se.c
2020-11-26 01:41:45 +02:00

523 lines
14 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "se.h"
#include "se_t210.h"
#include <mem/heap.h>
#include <soc/bpmp.h>
#include <soc/t210.h>
#include <utils/util.h>
typedef struct _se_ll_t
{
vu32 num;
vu32 addr;
vu32 size;
} se_ll_t;
static void _gf256_mul_x(void *block)
{
u8 *pdata = (u8 *)block;
u32 carry = 0;
for (int i = 0xF; i >= 0; i--)
{
u8 b = pdata[i];
pdata[i] = (b << 1) | carry;
carry = b >> 7;
}
if (carry)
pdata[0xF] ^= 0x87;
}
static void _se_ll_init(se_ll_t *ll, u32 addr, u32 size)
{
ll->num = 0;
ll->addr = addr;
ll->size = size;
}
static void _se_ll_set(se_ll_t *dst, se_ll_t *src)
{
SE(SE_IN_LL_ADDR_REG_OFFSET) = (u32)src;
SE(SE_OUT_LL_ADDR_REG_OFFSET) = (u32)dst;
}
static int _se_wait()
{
while (!(SE(SE_INT_STATUS_REG_OFFSET) & SE_INT_OP_DONE(INT_SET)))
;
if (SE(SE_INT_STATUS_REG_OFFSET) & SE_INT_ERROR(INT_SET) ||
SE(SE_STATUS_0) & SE_STATUS_0_STATE_WAIT_IN ||
SE(SE_ERR_STATUS_0) != SE_ERR_STATUS_0_SE_NS_ACCESS_CLEAR)
return 0;
return 1;
}
se_ll_t *ll_dst, *ll_src;
static int _se_execute(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size, bool is_oneshot)
{
ll_dst = NULL;
ll_src = NULL;
if (dst)
{
ll_dst = (se_ll_t *)malloc(sizeof(se_ll_t));
_se_ll_init(ll_dst, (u32)dst, dst_size);
}
if (src)
{
ll_src = (se_ll_t *)malloc(sizeof(se_ll_t));
_se_ll_init(ll_src, (u32)src, src_size);
}
_se_ll_set(ll_dst, ll_src);
SE(SE_ERR_STATUS_0) = SE(SE_ERR_STATUS_0);
SE(SE_INT_STATUS_REG_OFFSET) = SE(SE_INT_STATUS_REG_OFFSET);
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
SE(SE_OPERATION_REG_OFFSET) = SE_OPERATION(op);
if (is_oneshot)
{
int res = _se_wait();
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
if (src)
free(ll_src);
if (dst)
free(ll_dst);
return res;
}
return 1;
}
static int _se_execute_finalize()
{
int res = _se_wait();
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
if (ll_src)
{
free(ll_src);
ll_src = NULL;
}
if (ll_dst)
{
free(ll_dst);
ll_dst = NULL;
}
return res;
}
static int _se_execute_oneshot(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size)
{
return _se_execute(op, dst, dst_size, src, src_size, true);
}
static int _se_execute_one_block(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size)
{
if (!src || !dst)
return 0;
u8 *block = (u8 *)malloc(0x10);
memset(block, 0, 0x10);
SE(SE_BLOCK_COUNT_REG_OFFSET) = 0;
memcpy(block, src, src_size);
int res = _se_execute_oneshot(op, block, 0x10, block, 0x10);
memcpy(dst, block, dst_size);
free(block);
return res;
}
static void _se_aes_ctr_set(void *ctr)
{
u32 *data = (u32 *)ctr;
for (u32 i = 0; i < 4; i++)
SE(SE_CRYPTO_CTR_REG_OFFSET + 4 * i) = data[i];
}
void se_rsa_acc_ctrl(u32 rs, u32 flags)
{
if (flags & SE_RSA_KEY_TBL_DIS_KEY_ALL_FLAG)
SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + 4 * rs) =
((flags >> SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG_SHIFT) & SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG) |
((flags & SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_FLAG) ^ SE_RSA_KEY_TBL_DIS_KEY_ALL_COMMON_FLAG);
if (flags & SE_RSA_KEY_TBL_DIS_KEY_LOCK_FLAG)
SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) &= ~BIT(rs);
}
void se_key_acc_ctrl(u32 ks, u32 flags)
{
if (flags & SE_KEY_TBL_DIS_KEY_ACCESS_FLAG)
SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 4 * ks) = ~flags;
if (flags & SE_KEY_TBL_DIS_KEY_LOCK_FLAG)
SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) &= ~BIT(ks);
}
u32 se_key_acc_ctrl_get(u32 ks)
{
return SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 4 * ks);
}
void se_aes_key_set(u32 ks, void *key, u32 size)
{
u32 *data = (u32 *)key;
for (u32 i = 0; i < size / 4; i++)
{
SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i;
SE(SE_KEYTABLE_DATA0_REG_OFFSET) = data[i];
}
}
void se_aes_iv_set(u32 ks, void *iv)
{
u32 *data = (u32 *)iv;
for (u32 i = 0; i < TEGRA_SE_AES_MIN_KEY_SIZE / 4; i++)
{
SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(QUAD_ORG_IV) | i;
SE(SE_KEYTABLE_DATA0_REG_OFFSET) = data[i];
}
}
void se_aes_key_get(u32 ks, void *key, u32 size)
{
u32 *data = (u32 *)key;
for (u32 i = 0; i < size / 4; i++)
{
SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i;
data[i] = SE(SE_KEYTABLE_DATA0_REG_OFFSET);
}
}
void se_aes_key_clear(u32 ks)
{
for (u32 i = 0; i < TEGRA_SE_AES_MAX_KEY_SIZE / 4; i++)
{
SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i;
SE(SE_KEYTABLE_DATA0_REG_OFFSET) = 0;
}
}
void se_aes_iv_clear(u32 ks)
{
for (u32 i = 0; i < TEGRA_SE_AES_MIN_KEY_SIZE / 4; i++)
{
SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(QUAD_ORG_IV) | i;
SE(SE_KEYTABLE_DATA0_REG_OFFSET) = 0;
}
}
int se_aes_unwrap_key(u32 ks_dst, u32 ks_src, const void *input)
{
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_KEYTAB);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks_src) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT);
SE(SE_BLOCK_COUNT_REG_OFFSET) = 0;
SE(SE_CRYPTO_KEYTABLE_DST_REG_OFFSET) = SE_CRYPTO_KEYTABLE_DST_KEY_INDEX(ks_dst);
return _se_execute_oneshot(OP_START, NULL, 0, input, 0x10);
}
int se_aes_crypt_ecb(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size)
{
if (enc)
{
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT);
}
else
{
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT);
}
SE(SE_BLOCK_COUNT_REG_OFFSET) = (src_size >> 4) - 1;
return _se_execute_oneshot(OP_START, dst, dst_size, src, src_size);
}
int se_aes_crypt_cbc(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size)
{
if (enc)
{
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) |
SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_TOP);
}
else
{
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_PREVAHB) |
SE_CRYPTO_CORE_SEL(CORE_DECRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM);
}
SE(SE_BLOCK_COUNT_REG_OFFSET) = (src_size >> 4) - 1;
return _se_execute_oneshot(OP_START, dst, dst_size, src, src_size);
}
int se_aes_crypt_block_ecb(u32 ks, u32 enc, void *dst, const void *src)
{
return se_aes_crypt_ecb(ks, enc, dst, 0x10, src, 0x10);
}
int se_aes_crypt_ctr(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size, void *ctr)
{
SE(SE_SPARE_0_REG_OFFSET) = 1;
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) |
SE_CRYPTO_XOR_POS(XOR_BOTTOM) | SE_CRYPTO_INPUT_SEL(INPUT_LNR_CTR) | SE_CRYPTO_CTR_VAL(1);
_se_aes_ctr_set(ctr);
u32 src_size_aligned = src_size & 0xFFFFFFF0;
u32 src_size_delta = src_size & 0xF;
if (src_size_aligned)
{
SE(SE_BLOCK_COUNT_REG_OFFSET) = (src_size >> 4) - 1;
if (!_se_execute_oneshot(OP_START, dst, dst_size, src, src_size_aligned))
return 0;
}
if (src_size - src_size_aligned && src_size_aligned < dst_size)
return _se_execute_one_block(OP_START, dst + src_size_aligned,
MIN(src_size_delta, dst_size - src_size_aligned),
src + src_size_aligned, src_size_delta);
return 1;
}
int se_aes_xts_crypt_sec(u32 ks1, u32 ks2, u32 enc, u64 sec, void *dst, void *src, u32 secsize)
{
int res = 0;
u8 *tweak = (u8 *)malloc(0x10);
u8 *pdst = (u8 *)dst;
u8 *psrc = (u8 *)src;
//Generate tweak.
for (int i = 0xF; i >= 0; i--)
{
tweak[i] = sec & 0xFF;
sec >>= 8;
}
if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak))
goto out;
//We are assuming a 0x10-aligned sector size in this implementation.
for (u32 i = 0; i < secsize / 0x10; i++)
{
for (u32 j = 0; j < 0x10; j++)
pdst[j] = psrc[j] ^ tweak[j];
if (!se_aes_crypt_block_ecb(ks2, enc, pdst, pdst))
goto out;
for (u32 j = 0; j < 0x10; j++)
pdst[j] = pdst[j] ^ tweak[j];
_gf256_mul_x(tweak);
psrc += 0x10;
pdst += 0x10;
}
res = 1;
out:;
free(tweak);
return res;
}
int se_aes_xts_crypt(u32 ks1, u32 ks2, u32 enc, u64 sec, void *dst, void *src, u32 secsize, u32 num_secs)
{
u8 *pdst = (u8 *)dst;
u8 *psrc = (u8 *)src;
for (u32 i = 0; i < num_secs; i++)
if (!se_aes_xts_crypt_sec(ks1, ks2, enc, sec + i, pdst + secsize * i, psrc + secsize * i, secsize))
return 0;
return 1;
}
int se_calc_sha256(void *hash, u32 *msg_left, const void *src, u32 src_size, u64 total_size, u32 sha_cfg, bool is_oneshot)
{
int res;
u32 *hash32 = (u32 *)hash;
//! TODO: src_size must be 512 bit aligned if continuing and not last block for SHA256.
if (src_size > 0xFFFFFF || (u32)hash % 4 || !hash) // Max 16MB - 1 chunks and aligned x4 hash buffer.
return 0;
// Setup config for SHA256.
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_MODE(MODE_SHA256) | SE_CONFIG_ENC_ALG(ALG_SHA) | SE_CONFIG_DST(DST_HASHREG);
SE(SE_SHA_CONFIG_REG_OFFSET) = sha_cfg;
SE(SE_BLOCK_COUNT_REG_OFFSET) = 0;
// Set total size to current buffer size if empty.
if (!total_size)
total_size = src_size;
// Set total size: BITS(src_size), up to 2 EB.
SE(SE_SHA_MSG_LENGTH_0_REG_OFFSET) = (u32)(total_size << 3);
SE(SE_SHA_MSG_LENGTH_1_REG_OFFSET) = (u32)(total_size >> 29);
SE(SE_SHA_MSG_LENGTH_2_REG_OFFSET) = 0;
SE(SE_SHA_MSG_LENGTH_3_REG_OFFSET) = 0;
// Set size left to hash.
SE(SE_SHA_MSG_LEFT_0_REG_OFFSET) = (u32)(total_size << 3);
SE(SE_SHA_MSG_LEFT_1_REG_OFFSET) = (u32)(total_size >> 29);
SE(SE_SHA_MSG_LEFT_2_REG_OFFSET) = 0;
SE(SE_SHA_MSG_LEFT_3_REG_OFFSET) = 0;
// If we hash in chunks, copy over the intermediate.
if (sha_cfg == SHA_CONTINUE && msg_left)
{
// Restore message left to process.
SE(SE_SHA_MSG_LEFT_0_REG_OFFSET) = msg_left[0];
SE(SE_SHA_MSG_LEFT_1_REG_OFFSET) = msg_left[1];
// Restore hash reg.
for (u32 i = 0; i < 8; i++)
SE(SE_HASH_RESULT_REG_OFFSET + (i << 2)) = byte_swap_32(hash32[i]);
}
// Trigger the operation.
res = _se_execute(OP_START, NULL, 0, src, src_size, is_oneshot);
if (is_oneshot)
{
// Backup message left.
if (msg_left)
{
msg_left[0] = SE(SE_SHA_MSG_LEFT_0_REG_OFFSET);
msg_left[1] = SE(SE_SHA_MSG_LEFT_1_REG_OFFSET);
}
// Copy output hash.
for (u32 i = 0; i < 8; i++)
hash32[i] = byte_swap_32(SE(SE_HASH_RESULT_REG_OFFSET + (i << 2)));
}
return res;
}
int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size)
{
return se_calc_sha256(hash, NULL, src, src_size, 0, SHA_INIT_HASH, true);
}
int se_calc_sha256_finalize(void *hash, u32 *msg_left)
{
u32 *hash32 = (u32 *)hash;
int res = _se_execute_finalize();
// Backup message left.
if (msg_left)
{
msg_left[0] = SE(SE_SHA_MSG_LEFT_0_REG_OFFSET);
msg_left[1] = SE(SE_SHA_MSG_LEFT_1_REG_OFFSET);
}
// Copy output hash.
for (u32 i = 0; i < 8; i++)
hash32[i] = byte_swap_32(SE(SE_HASH_RESULT_REG_OFFSET + (i << 2)));
return res;
}
int se_gen_prng128(void *dst)
{
// Setup config for X931 PRNG.
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_MEMORY);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_HASH(HASH_DISABLE) | SE_CRYPTO_XOR_POS(XOR_BYPASS) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM);
SE(SE_RNG_CONFIG_REG_OFFSET) = SE_RNG_CONFIG_SRC(RNG_SRC_ENTROPY) | SE_RNG_CONFIG_MODE(RNG_MODE_NORMAL);
//SE(SE_RNG_SRC_CONFIG_REG_OFFSET) =
// SE_RNG_SRC_CONFIG_ENT_SRC(RNG_SRC_RO_ENT_ENABLE) | SE_RNG_SRC_CONFIG_ENT_SRC_LOCK(RNG_SRC_RO_ENT_LOCK_ENABLE);
SE(SE_RNG_RESEED_INTERVAL_REG_OFFSET) = 1;
SE(SE_BLOCK_COUNT_REG_OFFSET) = (16 >> 4) - 1;
// Trigger the operation.
return _se_execute_oneshot(OP_START, dst, 16, NULL, 0);
}
void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize)
{
u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40);
// Set Secure Random Key.
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_SRK);
SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(0) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM);
SE(SE_RNG_CONFIG_REG_OFFSET) = SE_RNG_CONFIG_SRC(RNG_SRC_ENTROPY) | SE_RNG_CONFIG_MODE(RNG_MODE_FORCE_RESEED);
SE(SE_CRYPTO_LAST_BLOCK) = 0;
_se_execute_oneshot(OP_START, NULL, 0, NULL, 0);
// Save AES keys.
SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
for (u32 i = 0; i < TEGRA_SE_KEYSLOT_COUNT; i++)
{
SE(SE_CONTEXT_SAVE_CONFIG_REG_OFFSET) = SE_CONTEXT_SAVE_SRC(AES_KEYTABLE) |
(i << SE_KEY_INDEX_SHIFT) | SE_CONTEXT_SAVE_WORD_QUAD(KEYS_0_3);
SE(SE_CRYPTO_LAST_BLOCK) = 0;
_se_execute_oneshot(OP_CTX_SAVE, aligned_buf, 0x10, NULL, 0);
memcpy(keys + i * keysize, aligned_buf, 0x10);
if (keysize > 0x10)
{
SE(SE_CONTEXT_SAVE_CONFIG_REG_OFFSET) = SE_CONTEXT_SAVE_SRC(AES_KEYTABLE) |
(i << SE_KEY_INDEX_SHIFT) | SE_CONTEXT_SAVE_WORD_QUAD(KEYS_4_7);
SE(SE_CRYPTO_LAST_BLOCK) = 0;
_se_execute_oneshot(OP_CTX_SAVE, aligned_buf, 0x10, NULL, 0);
memcpy(keys + i * keysize + 0x10, aligned_buf, 0x10);
}
}
// Save SRK to PMC secure scratches.
SE(SE_CONTEXT_SAVE_CONFIG_REG_OFFSET) = SE_CONTEXT_SAVE_SRC(SRK);
SE(0x80) = 0; // SE_CRYPTO_LAST_BLOCK
_se_execute_oneshot(OP_CTX_SAVE, NULL, 0, NULL, 0);
// End context save.
SE(SE_CONFIG_REG_OFFSET) = 0;
_se_execute_oneshot(OP_CTX_SAVE, NULL, 0, NULL, 0);
// Get SRK.
u32 srk[4];
srk[0] = PMC(0xC0);
srk[1] = PMC(0xC4);
srk[2] = PMC(0x224);
srk[3] = PMC(0x228);
// Decrypt context.
se_aes_key_clear(3);
se_aes_key_set(3, srk, 0x10);
se_aes_crypt_cbc(3, 0, keys, TEGRA_SE_KEYSLOT_COUNT * keysize, keys, TEGRA_SE_KEYSLOT_COUNT * keysize);
se_aes_key_clear(3);
}