1
0
Fork 0
mirror of https://github.com/DarkMatterCore/nxdumptool.git synced 2024-12-23 09:02:06 +00:00
nxdumptool/source/core/bktr.c
Pablo Curiel ecaeddf356 Fix Patch RomFS ctx init w/missing base NCA FS.
This bug was introduced in c474435ea8.

Other changes include:

* nxdt_rw_poc, bktr: minor cosmetic code changes.
* cnmt: add ContentMetaPlatform enum.
2023-10-12 11:24:03 +02:00

1743 lines
71 KiB
C

/*
* bktr.c
*
* Copyright (c) 2018-2020, SciresM.
* Copyright (c) 2020-2023, DarkMatterCore <pabloacurielz@gmail.com>.
*
* This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool).
*
* nxdumptool is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* nxdumptool is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "nxdt_utils.h"
#include "bktr.h"
#include "aes.h"
/* Type definitions. */
typedef struct {
u64 offset;
u32 stride;
} BucketTreeStorageNodeOffset;
typedef struct {
BucketTreeStorageNodeOffset start;
u32 count;
u32 index;
} BucketTreeStorageNode;
typedef struct {
BucketTreeNodeHeader header;
u64 start;
} BucketTreeEntrySetHeader;
NXDT_ASSERT(BucketTreeEntrySetHeader, BKTR_NODE_HEADER_SIZE + 0x8);
typedef struct {
BucketTreeContext *bktr_ctx;
BucketTreeEntrySetHeader entry_set;
u32 entry_index;
void *entry;
} BucketTreeVisitor;
typedef struct {
void *buffer;
u64 offset;
u64 size;
u64 virtual_offset;
u32 ctr_val;
bool aes_ctr_ex_crypt;
u8 parent_storage_type; ///< BucketTreeStorageType.
} BucketTreeSubStorageReadParams;
/* Global variables. */
#if LOG_LEVEL <= LOG_LEVEL_ERROR
static const char *g_bktrStorageTypeNames[] = {
[BucketTreeStorageType_Indirect] = "Indirect",
[BucketTreeStorageType_AesCtrEx] = "AesCtrEx",
[BucketTreeStorageType_Compressed] = "Compressed",
[BucketTreeStorageType_Sparse] = "Sparse"
};
#endif
/* Function prototypes. */
#if LOG_LEVEL <= LOG_LEVEL_ERROR
static const char *bktrGetStorageTypeName(u8 storage_type);
#endif
static bool bktrInitializeIndirectStorageContext(BucketTreeContext *out, NcaFsSectionContext *nca_fs_ctx, bool is_sparse);
static bool bktrGetIndirectStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeIndirectStorageEntry *out_cur_entry, u64 *out_next_entry_offset);
static bool bktrReadIndirectStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset);
static bool bktrInitializeAesCtrExStorageContext(BucketTreeContext *out, NcaFsSectionContext *nca_fs_ctx);
static bool bktrGetAesCtrExStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeAesCtrExStorageEntry *out_cur_entry, u64 *out_next_entry_offset);
static bool bktrReadAesCtrExStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset);
static bool bktrGetCompressedStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeCompressedStorageEntry *out_cur_entry, u64 *out_next_entry_offset);
static bool bktrReadCompressedStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset);
static bool bktrReadSubStorage(BucketTreeSubStorage *substorage, BucketTreeSubStorageReadParams *params);
NX_INLINE void bktrInitializeSubStorageReadParams(BucketTreeSubStorageReadParams *out, void *buffer, u64 offset, u64 size, u64 virtual_offset, u32 ctr_val, bool aes_ctr_ex_crypt, u8 parent_storage_type);
static bool bktrVerifyBucketInfo(NcaBucketInfo *bucket, u64 node_size, u64 entry_size, u64 *out_node_storage_size, u64 *out_entry_storage_size);
static bool bktrValidateTableOffsetNode(const BucketTreeTable *table, u64 node_size, u64 entry_size, u32 entry_count, u64 *out_start_offset, u64 *out_end_offset);
NX_INLINE bool bktrVerifyNodeHeader(const BucketTreeNodeHeader *node_header, u32 node_index, u64 node_size, u64 entry_size);
static u64 bktrQueryNodeStorageSize(u64 node_size, u64 entry_size, u32 entry_count);
static u64 bktrQueryEntryStorageSize(u64 node_size, u64 entry_size, u32 entry_count);
NX_INLINE u32 bktrGetEntryCount(u64 node_size, u64 entry_size);
NX_INLINE u32 bktrGetOffsetCount(u64 node_size);
NX_INLINE u32 bktrGetEntrySetCount(u64 node_size, u64 entry_size, u32 entry_count);
NX_INLINE u32 bktrGetNodeL2Count(u64 node_size, u64 entry_size, u32 entry_count);
NX_INLINE const void *bktrGetNodeArray(const BucketTreeNodeHeader *node_header);
NX_INLINE const u64 *bktrGetOffsetNodeArray(const BucketTreeOffsetNode *offset_node);
NX_INLINE const u64 *bktrGetOffsetNodeBegin(const BucketTreeOffsetNode *offset_node);
NX_INLINE const u64 *bktrGetOffsetNodeEnd(const BucketTreeOffsetNode *offset_node);
static bool bktrFindStorageEntry(BucketTreeContext *ctx, u64 virtual_offset, BucketTreeVisitor *out_visitor);
static bool bktrGetTreeNodeEntryIndex(const u64 *start_ptr, const u64 *end_ptr, u64 virtual_offset, u32 *out_index);
static bool bktrGetEntryNodeEntryIndex(const BucketTreeNodeHeader *node_header, u64 entry_size, u64 virtual_offset, u32 *out_index);
static bool bktrFindEntrySet(BucketTreeContext *ctx, u32 *out_index, u64 virtual_offset, u32 node_index);
static const BucketTreeNodeHeader *bktrGetTreeNodeHeader(BucketTreeContext *ctx, u32 node_index);
NX_INLINE u32 bktrGetEntrySetIndex(BucketTreeContext *ctx, u32 node_index, u32 offset_index);
static bool bktrFindEntry(BucketTreeContext *ctx, BucketTreeVisitor *out_visitor, u64 virtual_offset, u32 entry_set_index);
static const BucketTreeNodeHeader *bktrGetEntryNodeHeader(BucketTreeContext *ctx, u32 entry_set_index);
NX_INLINE u64 bktrGetEntryNodeEntryOffset(u64 entry_set_offset, u64 entry_size, u32 entry_index);
NX_INLINE u64 bktrGetEntryNodeEntryOffsetByIndex(u32 entry_set_index, u64 node_size, u64 entry_size, u32 entry_index);
NX_INLINE bool bktrIsExistL2(BucketTreeContext *ctx);
NX_INLINE bool bktrIsExistOffsetL2OnL1(BucketTreeContext *ctx);
static void bktrInitializeStorageNode(BucketTreeStorageNode *out, u64 entry_size, u32 entry_count);
static void bktrStorageNodeFind(BucketTreeStorageNode *storage_node, const BucketTreeNodeHeader *node_header, u64 virtual_offset);
NX_INLINE BucketTreeStorageNodeOffset bktrStorageNodeOffsetAdd(BucketTreeStorageNodeOffset *ofs, u64 value);
NX_INLINE const u64 bktrStorageNodeOffsetGetEntryVirtualOffset(const BucketTreeNodeHeader *node_header, const BucketTreeStorageNodeOffset *ofs);
NX_INLINE bool bktrVisitorIsValid(BucketTreeVisitor *visitor);
NX_INLINE bool bktrVisitorCanMoveNext(BucketTreeVisitor *visitor);
static bool bktrVisitorMoveNext(BucketTreeVisitor *visitor);
bool bktrInitializeContext(BucketTreeContext *out, NcaFsSectionContext *nca_fs_ctx, u8 storage_type)
{
if (!out || !nca_fs_ctx || !nca_fs_ctx->enabled || nca_fs_ctx->section_type >= NcaFsSectionType_Invalid || !nca_fs_ctx->nca_ctx || \
(nca_fs_ctx->nca_ctx->rights_id_available && !nca_fs_ctx->nca_ctx->titlekey_retrieved) || storage_type == BucketTreeStorageType_Compressed || \
storage_type >= BucketTreeStorageType_Count)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
bool success = false;
/* Free output context beforehand. */
bktrFreeContext(out);
/* Initialize the desired storage type. */
switch(storage_type)
{
case BucketTreeStorageType_Indirect:
case BucketTreeStorageType_Sparse:
success = bktrInitializeIndirectStorageContext(out, nca_fs_ctx, storage_type == BucketTreeStorageType_Sparse);
break;
case BucketTreeStorageType_AesCtrEx:
success = bktrInitializeAesCtrExStorageContext(out, nca_fs_ctx);
break;
default:
break;
}
if (!success) LOG_MSG_ERROR("Failed to initialize Bucket Tree %s storage for FS section #%u in \"%s\".", bktrGetStorageTypeName(storage_type), nca_fs_ctx->section_idx, \
nca_fs_ctx->nca_ctx->content_id_str);
return success;
}
bool bktrInitializeCompressedStorageContext(BucketTreeContext *out, BucketTreeSubStorage *substorage)
{
if (!out || !bktrIsValidSubStorage(substorage) || substorage->index != 0 || !substorage->nca_fs_ctx->enabled || !substorage->nca_fs_ctx->has_compression_layer || \
substorage->nca_fs_ctx->section_type >= NcaFsSectionType_Invalid || !substorage->nca_fs_ctx->nca_ctx || \
(substorage->nca_fs_ctx->nca_ctx->rights_id_available && !substorage->nca_fs_ctx->nca_ctx->titlekey_retrieved) || \
substorage->type == BucketTreeSubStorageType_AesCtrEx || substorage->type == BucketTreeSubStorageType_Compressed || substorage->type >= BucketTreeSubStorageType_Count)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Free output context beforehand. */
bktrFreeContext(out);
NcaFsSectionContext *nca_fs_ctx = substorage->nca_fs_ctx;
NcaBucketInfo *compressed_bucket = &(nca_fs_ctx->header.compression_info.bucket);
BucketTreeTable *compressed_table = NULL;
u64 node_storage_size = 0, entry_storage_size = 0;
BucketTreeSubStorageReadParams params = {0};
bool dump_table = false, success = false;
/* Verify bucket info. */
if (!bktrVerifyBucketInfo(compressed_bucket, BKTR_NODE_SIZE, BKTR_COMPRESSED_ENTRY_SIZE, &node_storage_size, &entry_storage_size))
{
LOG_MSG_ERROR("Compressed Storage BucketInfo verification failed!");
goto end;
}
/* Allocate memory for the full Compressed table. */
compressed_table = calloc(1, compressed_bucket->size);
if (!compressed_table)
{
LOG_MSG_ERROR("Unable to allocate memory for the Compressed Storage Table!");
goto end;
}
/* Read Compressed storage table data. */
const u64 compression_table_offset = (nca_fs_ctx->hash_region.size + compressed_bucket->offset);
bktrInitializeSubStorageReadParams(&params, compressed_table, compression_table_offset, compressed_bucket->size, 0, 0, false, BucketTreeSubStorageType_Compressed);
if (!bktrReadSubStorage(substorage, &params))
{
LOG_MSG_ERROR("Failed to read Compressed Storage Table data!");
goto end;
}
dump_table = true;
/* Validate table offset node. */
u64 start_offset = 0, end_offset = 0;
if (!bktrValidateTableOffsetNode(compressed_table, BKTR_NODE_SIZE, BKTR_COMPRESSED_ENTRY_SIZE, compressed_bucket->header.entry_count, &start_offset, &end_offset))
{
LOG_MSG_ERROR("Compressed Storage Table Offset Node validation failed!");
goto end;
}
/* Update output context. */
out->nca_fs_ctx = nca_fs_ctx;
out->storage_type = BucketTreeStorageType_Compressed;
out->storage_table = compressed_table;
out->node_size = BKTR_NODE_SIZE;
out->entry_size = BKTR_COMPRESSED_ENTRY_SIZE;
out->offset_count = bktrGetOffsetCount(BKTR_NODE_SIZE);
out->entry_set_count = bktrGetEntrySetCount(BKTR_NODE_SIZE, BKTR_COMPRESSED_ENTRY_SIZE, compressed_bucket->header.entry_count);
out->node_storage_size = node_storage_size;
out->entry_storage_size = entry_storage_size;
out->start_offset = start_offset;
out->end_offset = end_offset;
memcpy(&(out->substorages[0]), substorage, sizeof(BucketTreeSubStorage));
/* Update return value. */
success = true;
end:
if (!success)
{
LOG_DATA_DEBUG(compressed_bucket, sizeof(NcaBucketInfo), "Compressed Storage BucketInfo dump:");
if (compressed_table)
{
if (dump_table) LOG_DATA_DEBUG(compressed_table, compressed_bucket->size, "Compressed Storage Table dump:");
free(compressed_table);
}
}
return success;
}
bool bktrSetRegularSubStorage(BucketTreeContext *ctx, NcaFsSectionContext *nca_fs_ctx)
{
if (!bktrIsValidContext(ctx) || !nca_fs_ctx || !nca_fs_ctx->enabled || nca_fs_ctx->section_type >= NcaFsSectionType_Invalid || \
!nca_fs_ctx->nca_ctx || (nca_fs_ctx->nca_ctx->rights_id_available && !nca_fs_ctx->nca_ctx->titlekey_retrieved) || \
ctx->storage_type == BucketTreeStorageType_Compressed || ctx->storage_type >= BucketTreeStorageType_Count || \
(ctx->storage_type == BucketTreeStorageType_Indirect && ctx->nca_fs_ctx == nca_fs_ctx) || \
((ctx->storage_type == BucketTreeStorageType_AesCtrEx || ctx->storage_type == BucketTreeStorageType_Sparse) && ctx->nca_fs_ctx != nca_fs_ctx))
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Update the substorage. */
BucketTreeSubStorage *substorage = &(ctx->substorages[0]);
memset(substorage, 0, sizeof(BucketTreeSubStorage));
substorage->index = 0;
substorage->nca_fs_ctx = nca_fs_ctx;
substorage->type = BucketTreeSubStorageType_Regular;
substorage->bktr_ctx = NULL;
return true;
}
bool bktrSetBucketTreeSubStorage(BucketTreeContext *parent_ctx, BucketTreeContext *child_ctx, u8 substorage_index)
{
if (!bktrIsValidContext(parent_ctx) || !bktrIsValidContext(child_ctx) || substorage_index >= BKTR_MAX_SUBSTORAGE_COUNT || \
parent_ctx->storage_type != BucketTreeStorageType_Indirect || child_ctx->storage_type < BucketTreeStorageType_AesCtrEx || \
child_ctx->storage_type > BucketTreeStorageType_Sparse || (child_ctx->storage_type == BucketTreeStorageType_AesCtrEx && (substorage_index != 1 || \
parent_ctx->nca_fs_ctx != child_ctx->nca_fs_ctx)) || ((child_ctx->storage_type == BucketTreeStorageType_Compressed || \
child_ctx->storage_type == BucketTreeStorageType_Sparse) && (substorage_index != 0 || parent_ctx->nca_fs_ctx == child_ctx->nca_fs_ctx)))
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Update the substorage. */
BucketTreeSubStorage *substorage = &(parent_ctx->substorages[substorage_index]);
memset(substorage, 0, sizeof(BucketTreeSubStorage));
substorage->index = substorage_index;
substorage->nca_fs_ctx = child_ctx->nca_fs_ctx;
substorage->type = (child_ctx->storage_type + 1); /* Convert to BucketTreeSubStorageType value. */
substorage->bktr_ctx = child_ctx;
return true;
}
bool bktrReadStorage(BucketTreeContext *ctx, void *out, u64 read_size, u64 offset)
{
if (!bktrIsBlockWithinStorageRange(ctx, read_size, offset) || !out)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeVisitor visitor = {0};
bool success = false;
/* Find storage entry. */
if (!bktrFindStorageEntry(ctx, offset, &visitor))
{
LOG_MSG_ERROR("Unable to find %s storage entry for offset 0x%lX!", bktrGetStorageTypeName(ctx->storage_type), offset);
goto end;
}
/* Process storage entry according to the storage type. */
switch(ctx->storage_type)
{
case BucketTreeStorageType_Indirect:
case BucketTreeStorageType_Sparse:
success = bktrReadIndirectStorage(&visitor, out, read_size, offset);
break;
case BucketTreeStorageType_AesCtrEx:
success = bktrReadAesCtrExStorage(&visitor, out, read_size, offset);
break;
case BucketTreeStorageType_Compressed:
success = bktrReadCompressedStorage(&visitor, out, read_size, offset);
break;
default:
break;
}
if (!success) LOG_MSG_ERROR("Failed to read 0x%lX-byte long block at offset 0x%lX from %s storage!", read_size, offset, bktrGetStorageTypeName(ctx->storage_type));
end:
return success;
}
bool bktrIsBlockWithinIndirectStorageRange(BucketTreeContext *ctx, u64 offset, u64 size, bool *out)
{
if (!bktrIsBlockWithinStorageRange(ctx, size, offset) || (ctx->storage_type != BucketTreeStorageType_Indirect && ctx->storage_type != BucketTreeStorageType_Compressed) || \
(ctx->storage_type == BucketTreeStorageType_Compressed && ctx->substorages[0].type != BucketTreeSubStorageType_Indirect) || !out)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeVisitor visitor = {0};
bool updated = false, success = false;
/* Find storage entry. */
if (!bktrFindStorageEntry(ctx, offset, &visitor))
{
LOG_MSG_ERROR("Unable to find %s storage entry for offset 0x%lX!", bktrGetStorageTypeName(ctx->storage_type), offset);
goto end;
}
/* Check if we're dealing with a Compressed storage. */
if (ctx->storage_type == BucketTreeStorageType_Compressed)
{
BucketTreeContext *indirect_storage = ctx->substorages[0].bktr_ctx;
const u64 compressed_storage_base_offset = ctx->nca_fs_ctx->hash_region.size;
BucketTreeCompressedStorageEntry *start_entry = NULL, *end_entry = NULL;
/* Validate start entry node. */
start_entry = end_entry = (BucketTreeCompressedStorageEntry*)visitor.entry;
if (!bktrIsOffsetWithinStorageRange(ctx, (u64)start_entry->virtual_offset) || (u64)start_entry->virtual_offset > offset)
{
LOG_MSG_ERROR("Invalid Compressed Storage entry! (0x%lX) (#1).", start_entry->virtual_offset);
goto end;
}
/* Loop until we reach the upper bound of the requested block or find a match. */
do {
u64 cur_entry_offset = 0;
/* Check if we can move any further. */
if (bktrVisitorCanMoveNext(&visitor))
{
BucketTreeCompressedStorageEntry *tmp = end_entry;
/* Retrieve next entry node. */
if (!bktrVisitorMoveNext(&visitor))
{
LOG_MSG_ERROR("Failed to retrieve next Compressed Storage entry!");
goto end;
}
/* Validate next entry node. */
end_entry = (BucketTreeCompressedStorageEntry*)visitor.entry;
if (!bktrIsOffsetWithinStorageRange(ctx, (u64)end_entry->virtual_offset) || (u64)end_entry->virtual_offset <= (u64)tmp->virtual_offset)
{
LOG_MSG_ERROR("Invalid Indirect Storage entry! (0x%lX) (#2).", (u64)end_entry->virtual_offset);
goto end;
}
/* Update current entry offset. */
cur_entry_offset = (u64)end_entry->virtual_offset;
/* Update start entry node. */
start_entry = tmp;
} else {
/* Update current entry offset. */
cur_entry_offset = ctx->end_offset;
/* Update entry nodes. */
start_entry = end_entry;
end_entry = NULL;
}
/* Calculate indirect block extents. */
u64 indirect_block_offset = compressed_storage_base_offset;
u64 indirect_block_size = (cur_entry_offset - (u64)start_entry->virtual_offset);
if ((u64)start_entry->virtual_offset <= offset)
{
indirect_block_offset += ((offset - (u64)start_entry->virtual_offset) + (u64)start_entry->physical_offset);
indirect_block_size -= (offset - (u64)start_entry->virtual_offset);
} else {
indirect_block_offset += (u64)start_entry->physical_offset;
}
if ((offset + size) <= cur_entry_offset)
{
indirect_block_size -= (cur_entry_offset - (offset + size));
end_entry = NULL; /* Don't proceed any further, we have found our upper bound. */
}
/* Check if the current Compressed Storage entry node points to one or more Indirect Storage entry nodes with Patch storage index. */
if (!bktrIsBlockWithinIndirectStorageRange(indirect_storage, indirect_block_offset, indirect_block_size, &updated))
{
LOG_MSG_ERROR("Failed to determine if 0x%lX-byte long Compressed storage block at offset 0x%lX is within Indirect Storage!", indirect_block_offset, indirect_block_size);
goto end;
}
} while(!updated && end_entry && (u64)end_entry->virtual_offset < (offset + size));
/* Update output values. */
*out = updated;
success = true;
goto end;
}
/* Check the Indirect Storage. */
BucketTreeIndirectStorageEntry *start_entry = NULL, *end_entry = NULL;
/* Validate start entry node. */
start_entry = end_entry = (BucketTreeIndirectStorageEntry*)visitor.entry;
if (!bktrIsOffsetWithinStorageRange(ctx, start_entry->virtual_offset) || start_entry->virtual_offset > offset)
{
LOG_MSG_ERROR("Invalid Indirect Storage entry! (0x%lX) (#1).", start_entry->virtual_offset);
goto end;
}
/* Loop through adjacent Indirect Storage entry nodes and check if at least one of them uses the Patch storage index. */
do {
/* Break out of the loop immediately if the current entry node's storage index matches Patch. */
if (end_entry->storage_index == BucketTreeIndirectStorageIndex_Patch)
{
updated = true;
break;
}
/* Don't proceed if we can't move any further. */
if (!bktrVisitorCanMoveNext(&visitor)) break;
/* Retrieve the next entry node. */
if (!bktrVisitorMoveNext(&visitor))
{
LOG_MSG_ERROR("Failed to retrieve next Indirect Storage entry!");
goto end;
}
/* Validate current entry node. */
end_entry = (BucketTreeIndirectStorageEntry*)visitor.entry;
if (!bktrIsOffsetWithinStorageRange(ctx, end_entry->virtual_offset) || end_entry->virtual_offset <= start_entry->virtual_offset)
{
LOG_MSG_ERROR("Invalid Indirect Storage entry! (0x%lX) (#2).", end_entry->virtual_offset);
goto end;
}
} while(end_entry->virtual_offset < (offset + size));
/* Update output values. */
*out = updated;
success = true;
end:
return success;
}
#if LOG_LEVEL <= LOG_LEVEL_ERROR
static const char *bktrGetStorageTypeName(u8 storage_type)
{
return (storage_type < BucketTreeStorageType_Count ? g_bktrStorageTypeNames[storage_type] : NULL);
}
#endif
static bool bktrInitializeIndirectStorageContext(BucketTreeContext *out, NcaFsSectionContext *nca_fs_ctx, bool is_sparse)
{
if ((!is_sparse && nca_fs_ctx->section_type != NcaFsSectionType_PatchRomFs) || (is_sparse && !nca_fs_ctx->has_sparse_layer))
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
NcaContext *nca_ctx = nca_fs_ctx->nca_ctx;
NcaBucketInfo *indirect_bucket = (is_sparse ? &(nca_fs_ctx->header.sparse_info.bucket) : &(nca_fs_ctx->header.patch_info.indirect_bucket));
BucketTreeTable *indirect_table = NULL;
u64 node_storage_size = 0, entry_storage_size = 0;
bool dump_table = false, success = false;
/* Verify bucket info. */
if (!bktrVerifyBucketInfo(indirect_bucket, BKTR_NODE_SIZE, BKTR_INDIRECT_ENTRY_SIZE, &node_storage_size, &entry_storage_size))
{
LOG_MSG_ERROR("Indirect Storage BucketInfo verification failed! (%s).", is_sparse ? "sparse" : "patch");
goto end;
}
/* Allocate memory for the full indirect table. */
indirect_table = calloc(1, indirect_bucket->size);
if (!indirect_table)
{
LOG_MSG_ERROR("Unable to allocate memory for the Indirect Storage Table! (%s).", is_sparse ? "sparse" : "patch");
goto end;
}
/* Read indirect storage table data. */
if ((!is_sparse && !ncaReadFsSection(nca_fs_ctx, indirect_table, indirect_bucket->size, indirect_bucket->offset)) || \
(is_sparse && !ncaReadContentFile(nca_ctx, indirect_table, indirect_bucket->size, nca_fs_ctx->sparse_table_offset)))
{
LOG_MSG_ERROR("Failed to read Indirect Storage Table data! (%s).", is_sparse ? "sparse" : "patch");
goto end;
}
/* Decrypt indirect storage table, if needed. */
if (is_sparse)
{
NcaAesCtrUpperIv sparse_upper_iv = {0};
u8 sparse_ctr[AES_BLOCK_SIZE] = {0};
const u8 *sparse_ctr_key = NULL;
Aes128CtrContext sparse_ctr_ctx = {0};
/* Generate upper CTR IV. */
memcpy(sparse_upper_iv.value, nca_fs_ctx->header.aes_ctr_upper_iv.value, sizeof(sparse_upper_iv.value));
sparse_upper_iv.generation = ((u32)(nca_fs_ctx->header.sparse_info.generation) << 16);
/* Initialize partial AES CTR. */
aes128CtrInitializePartialCtr(sparse_ctr, sparse_upper_iv.value, nca_fs_ctx->sparse_table_offset);
/* Create AES CTR context. */
sparse_ctr_key = (nca_ctx->rights_id_available ? nca_ctx->titlekey : nca_ctx->decrypted_key_area.aes_ctr);
aes128CtrContextCreate(&sparse_ctr_ctx, sparse_ctr_key, sparse_ctr);
/* Decrypt indirect storage table in-place. */
aes128CtrCrypt(&sparse_ctr_ctx, indirect_table, indirect_table, indirect_bucket->size);
}
dump_table = true;
/* Validate table offset node. */
u64 start_offset = 0, end_offset = 0;
if (!bktrValidateTableOffsetNode(indirect_table, BKTR_NODE_SIZE, BKTR_INDIRECT_ENTRY_SIZE, indirect_bucket->header.entry_count, &start_offset, &end_offset))
{
LOG_MSG_ERROR("Indirect Storage Table Offset Node validation failed! (%s).", is_sparse ? "sparse" : "patch");
goto end;
}
/* Update output context. */
out->nca_fs_ctx = nca_fs_ctx;
out->storage_type = (is_sparse ? BucketTreeStorageType_Sparse : BucketTreeStorageType_Indirect);
out->storage_table = indirect_table;
out->node_size = BKTR_NODE_SIZE;
out->entry_size = BKTR_INDIRECT_ENTRY_SIZE;
out->offset_count = bktrGetOffsetCount(BKTR_NODE_SIZE);
out->entry_set_count = bktrGetEntrySetCount(BKTR_NODE_SIZE, BKTR_INDIRECT_ENTRY_SIZE, indirect_bucket->header.entry_count);
out->node_storage_size = node_storage_size;
out->entry_storage_size = entry_storage_size;
out->start_offset = start_offset;
out->end_offset = end_offset;
/* Update return value. */
success = true;
end:
if (!success)
{
LOG_DATA_DEBUG(indirect_bucket, sizeof(NcaBucketInfo), "Indirect Storage BucketInfo dump (%s):", is_sparse ? "sparse" : "patch");
if (indirect_table)
{
if (dump_table) LOG_DATA_DEBUG(indirect_table, indirect_bucket->size, "Indirect Storage Table dump (%s):", is_sparse ? "sparse" : "patch");
free(indirect_table);
}
}
return success;
}
static bool bktrGetIndirectStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeIndirectStorageEntry *out_cur_entry, u64 *out_next_entry_offset)
{
if (!visitor || !out_cur_entry || !out_next_entry_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeContext *ctx = visitor->bktr_ctx;
BucketTreeIndirectStorageEntry cur_entry = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0;
bool success = false;
/* Copy current Indirect Storage entry -- we'll move onto the next one, so we'll lose track of it. */
memcpy(&cur_entry, visitor->entry, sizeof(BucketTreeIndirectStorageEntry));
/* Validate Indirect Storage entry. */
if (!bktrIsOffsetWithinStorageRange(ctx, cur_entry.virtual_offset) || cur_entry.virtual_offset > offset || cur_entry.storage_index > BucketTreeIndirectStorageIndex_Patch)
{
LOG_MSG_ERROR("Invalid Indirect Storage entry! (0x%lX) (#1).", cur_entry.virtual_offset);
goto end;
}
cur_entry_offset = cur_entry.virtual_offset;
/* Check if we can retrieve the next entry. */
if (bktrVisitorCanMoveNext(visitor))
{
/* Retrieve the next entry. */
if (!bktrVisitorMoveNext(visitor))
{
LOG_MSG_ERROR("Failed to retrieve next Indirect Storage entry!");
goto end;
}
/* Validate Indirect Storage entry. */
BucketTreeIndirectStorageEntry *next_entry = (BucketTreeIndirectStorageEntry*)visitor->entry;
if (!bktrIsOffsetWithinStorageRange(ctx, next_entry->virtual_offset) || next_entry->storage_index > BucketTreeIndirectStorageIndex_Patch)
{
LOG_MSG_ERROR("Invalid Indirect Storage entry! (0x%lX) (#2).", next_entry->virtual_offset);
goto end;
}
/* Store next entry's virtual offset. */
next_entry_offset = next_entry->virtual_offset;
} else {
/* Set the next entry offset to the storage's end. */
next_entry_offset = ctx->end_offset;
}
/* Verify next entry offset. */
if (next_entry_offset <= cur_entry_offset || offset >= next_entry_offset)
{
LOG_MSG_ERROR("Invalid virtual offset for the Indirect Storage's next entry! (0x%lX).", next_entry_offset);
goto end;
}
/* Update variables. */
memcpy(out_cur_entry, &cur_entry, sizeof(BucketTreeIndirectStorageEntry));
*out_next_entry_offset = next_entry_offset;
success = true;
end:
return success;
}
static bool bktrReadIndirectStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset)
{
BucketTreeContext *ctx = visitor->bktr_ctx;
bool is_sparse = (ctx->storage_type == BucketTreeStorageType_Sparse);
bool missing_original_storage = !bktrIsValidSubStorage(&(ctx->substorages[0]));
BucketTreeIndirectStorageEntry cur_entry = {0};
BucketTreeSubStorageReadParams params = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0, accum = 0;
bool success = false;
if (!out || (is_sparse && (missing_original_storage || ctx->substorages[0].type != BucketTreeSubStorageType_Regular)) || \
(!is_sparse && (!bktrIsValidSubStorage(&(ctx->substorages[1])) || ctx->substorages[1].type != BucketTreeSubStorageType_AesCtrEx || \
(!missing_original_storage && (ctx->substorages[0].type == BucketTreeSubStorageType_Indirect || ctx->substorages[0].type == BucketTreeSubStorageType_AesCtrEx || \
ctx->substorages[0].type >= BucketTreeSubStorageType_Count)))) || (offset + read_size) > ctx->end_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Perform Indirect Storage reads until we reach the requested size. */
while(accum < read_size)
{
u8 *out_ptr = ((u8*)out + accum);
const u64 indirect_block_offset = (offset + accum);
u64 indirect_block_size = 0, indirect_block_read_size = 0, indirect_block_read_offset = 0, read_size_diff = 0;
/* Get current Indirect Storage entry and the start offset for the next one. */
if (!bktrGetIndirectStorageEntryExtents(visitor, indirect_block_offset, &cur_entry, &next_entry_offset))
{
LOG_MSG_ERROR("Failed to get Indirect Storage entry extents for offset 0x%lX!", indirect_block_offset);
goto end;
}
/* Calculate Indirect Storage block size. */
cur_entry_offset = cur_entry.virtual_offset;
indirect_block_size = (!accum ? (next_entry_offset - offset) : (next_entry_offset - cur_entry_offset));
/* Calculate Indirect Storage block read size and offset. */
read_size_diff = (read_size - accum);
indirect_block_read_size = (read_size_diff > indirect_block_size ? indirect_block_size : read_size_diff);
indirect_block_read_offset = (indirect_block_offset - cur_entry_offset + cur_entry.physical_offset);
/* Perform read operation within the current Indirect Storage entry. */
bktrInitializeSubStorageReadParams(&params, out_ptr, indirect_block_read_offset, indirect_block_read_size, indirect_block_offset, 0, false, ctx->storage_type);
if (cur_entry.storage_index == BucketTreeIndirectStorageIndex_Original)
{
if (!missing_original_storage)
{
/* Retrieve data from the original data storage. */
/* This must either be a Regular/Sparse/Compressed storage from the base NCA (Indirect) or a Regular storage from this very same NCA (Sparse). */
if (!bktrReadSubStorage(&(ctx->substorages[0]), &params))
{
LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk from offset 0x%lX in original data storage!", indirect_block_read_size, indirect_block_read_offset);
goto end;
}
} else {
LOG_MSG_ERROR("Error: attempting to read 0x%lX-byte long chunk from missing original data storage at offset 0x%lX!", indirect_block_read_size, indirect_block_read_offset);
goto end;
}
} else {
if (!is_sparse)
{
/* Retrieve data from the Indirect data storage. */
/* This must always be the AesCtrEx storage within this very same NCA (Indirect). */
if (!bktrReadSubStorage(&(ctx->substorages[1]), &params))
{
LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk from offset 0x%lX in AesCtrEx storage!", indirect_block_read_size, indirect_block_read_offset);
goto end;
}
} else {
/* Fill output buffer with zeroes (SparseStorage's ZeroStorage). */
memset(out_ptr, 0, indirect_block_read_size);
}
}
/* Update accumulator. */
accum += indirect_block_read_size;
}
/* Update flag. */
success = true;
end:
return success;
}
static bool bktrInitializeAesCtrExStorageContext(BucketTreeContext *out, NcaFsSectionContext *nca_fs_ctx)
{
if (nca_fs_ctx->section_type != NcaFsSectionType_PatchRomFs || !nca_fs_ctx->header.patch_info.aes_ctr_ex_bucket.size)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
NcaBucketInfo *aes_ctr_ex_bucket = &(nca_fs_ctx->header.patch_info.aes_ctr_ex_bucket);
BucketTreeTable *aes_ctr_ex_table = NULL;
u64 node_storage_size = 0, entry_storage_size = 0;
bool dump_table = false, success = false;
/* Verify bucket info. */
if (!bktrVerifyBucketInfo(aes_ctr_ex_bucket, BKTR_NODE_SIZE, BKTR_AES_CTR_EX_ENTRY_SIZE, &node_storage_size, &entry_storage_size))
{
LOG_MSG_ERROR("AesCtrEx Storage BucketInfo verification failed!");
goto end;
}
/* Allocate memory for the full AesCtrEx table. */
aes_ctr_ex_table = calloc(1, aes_ctr_ex_bucket->size);
if (!aes_ctr_ex_table)
{
LOG_MSG_ERROR("Unable to allocate memory for the AesCtrEx Storage Table!");
goto end;
}
/* Read AesCtrEx storage table data. */
if (!ncaReadFsSection(nca_fs_ctx, aes_ctr_ex_table, aes_ctr_ex_bucket->size, aes_ctr_ex_bucket->offset))
{
LOG_MSG_ERROR("Failed to read AesCtrEx Storage Table data!");
goto end;
}
dump_table = true;
/* Validate table offset node. */
u64 start_offset = 0, end_offset = 0;
if (!bktrValidateTableOffsetNode(aes_ctr_ex_table, BKTR_NODE_SIZE, BKTR_AES_CTR_EX_ENTRY_SIZE, aes_ctr_ex_bucket->header.entry_count, &start_offset, &end_offset))
{
LOG_MSG_ERROR("AesCtrEx Storage Table Offset Node validation failed!");
goto end;
}
/* Update output context. */
out->nca_fs_ctx = nca_fs_ctx;
out->storage_type = BucketTreeStorageType_AesCtrEx;
out->storage_table = aes_ctr_ex_table;
out->node_size = BKTR_NODE_SIZE;
out->entry_size = BKTR_AES_CTR_EX_ENTRY_SIZE;
out->offset_count = bktrGetOffsetCount(BKTR_NODE_SIZE);
out->entry_set_count = bktrGetEntrySetCount(BKTR_NODE_SIZE, BKTR_AES_CTR_EX_ENTRY_SIZE, aes_ctr_ex_bucket->header.entry_count);
out->node_storage_size = node_storage_size;
out->entry_storage_size = entry_storage_size;
out->start_offset = start_offset;
out->end_offset = end_offset;
/* Update return value. */
success = true;
end:
if (!success)
{
LOG_DATA_DEBUG(aes_ctr_ex_bucket, sizeof(NcaBucketInfo), "AesCtrEx Storage BucketInfo dump:");
if (aes_ctr_ex_table)
{
if (dump_table) LOG_DATA_DEBUG(aes_ctr_ex_table, aes_ctr_ex_bucket->size, "AesCtrEx Storage Table dump:");
free(aes_ctr_ex_table);
}
}
return success;
}
static bool bktrGetAesCtrExStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeAesCtrExStorageEntry *out_cur_entry, u64 *out_next_entry_offset)
{
if (!visitor || !out_cur_entry || !out_next_entry_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeContext *ctx = visitor->bktr_ctx;
BucketTreeAesCtrExStorageEntry cur_entry = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0;
bool success = false;
/* Copy current AesCtrEx Storage entry -- we'll move onto the next one, so we'll lose track of it. */
memcpy(&cur_entry, visitor->entry, sizeof(BucketTreeAesCtrExStorageEntry));
/* Validate AesCtrEx Storage entry. */
if (!bktrIsOffsetWithinStorageRange(ctx, cur_entry.offset) || cur_entry.offset > offset || !IS_ALIGNED(cur_entry.offset, AES_BLOCK_SIZE))
{
LOG_MSG_ERROR("Invalid AesCtrEx Storage entry! (0x%lX) (#1).", cur_entry.offset);
goto end;
}
cur_entry_offset = cur_entry.offset;
/* Check if we can retrieve the next entry. */
if (bktrVisitorCanMoveNext(visitor))
{
/* Retrieve the next entry. */
if (!bktrVisitorMoveNext(visitor))
{
LOG_MSG_ERROR("Failed to retrieve next AesCtrEx Storage entry!");
goto end;
}
/* Validate AesCtrEx Storage entry. */
BucketTreeAesCtrExStorageEntry *next_entry = (BucketTreeAesCtrExStorageEntry*)visitor->entry;
if (!bktrIsOffsetWithinStorageRange(ctx, next_entry->offset))
{
LOG_MSG_ERROR("Invalid AesCtrEx Storage entry! (0x%lX) (#2).", next_entry->offset);
goto end;
}
/* Store next entry's virtual offset. */
next_entry_offset = next_entry->offset;
} else {
/* Set the next entry offset to the storage's end. */
next_entry_offset = ctx->end_offset;
}
/* Verify next entry offset. */
if (!IS_ALIGNED(next_entry_offset, AES_BLOCK_SIZE) || next_entry_offset <= cur_entry_offset || offset >= next_entry_offset)
{
LOG_MSG_ERROR("Invalid offset for the AesCtrEx Storage's next entry! (0x%lX).", next_entry_offset);
goto end;
}
/* Update variables. */
memcpy(out_cur_entry, &cur_entry, sizeof(BucketTreeAesCtrExStorageEntry));
*out_next_entry_offset = next_entry_offset;
success = true;
end:
return success;
}
static bool bktrReadAesCtrExStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset)
{
BucketTreeContext *ctx = visitor->bktr_ctx;
BucketTreeAesCtrExStorageEntry cur_entry = {0};
BucketTreeSubStorageReadParams params = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0, accum = 0;
bool success = false;
if (!out || !bktrIsValidSubStorage(&(ctx->substorages[0])) || ctx->substorages[0].type != BucketTreeSubStorageType_Regular || (offset + read_size) > ctx->end_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Perform AesCtrEx Storage reads until we reach the requested size. */
while(accum < read_size)
{
u8 *out_ptr = ((u8*)out + accum);
const u64 aes_ctr_ex_block_offset = (offset + accum);
u64 aes_ctr_ex_block_size = 0, aes_ctr_ex_block_read_size = 0, read_size_diff = 0;
/* Get current AesCtrEx Storage entry and the start offset for the next one. */
if (!bktrGetAesCtrExStorageEntryExtents(visitor, aes_ctr_ex_block_offset, &cur_entry, &next_entry_offset))
{
LOG_MSG_ERROR("Failed to get AesCtrEx Storage entry extents for offset 0x%lX!", aes_ctr_ex_block_offset);
goto end;
}
/* Calculate AesCtrEx Storage block size. */
cur_entry_offset = cur_entry.offset;
aes_ctr_ex_block_size = (!accum ? (next_entry_offset - offset) : (next_entry_offset - cur_entry_offset));
/* Calculate AesCtrEx Storage block read size and offset. */
read_size_diff = (read_size - accum);
aes_ctr_ex_block_read_size = (read_size_diff > aes_ctr_ex_block_size ? aes_ctr_ex_block_size : read_size_diff);
/* Perform read operation within the current AesCtrEx Storage entry. */
bool aes_ctr_ex_crypt = (cur_entry.encryption == BucketTreeAesCtrExStorageEncryption_Enabled);
bktrInitializeSubStorageReadParams(&params, out_ptr, aes_ctr_ex_block_offset, aes_ctr_ex_block_read_size, 0, cur_entry.generation, aes_ctr_ex_crypt, ctx->storage_type);
if (!bktrReadSubStorage(&(ctx->substorages[0]), &params))
{
LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk at offset 0x%lX from AesCtrEx storage!", aes_ctr_ex_block_read_size, aes_ctr_ex_block_offset);
goto end;
}
/* Update accumulator. */
accum += aes_ctr_ex_block_read_size;
}
/* Update flag. */
success = true;
end:
return success;
}
static bool bktrGetCompressedStorageEntryExtents(BucketTreeVisitor *visitor, u64 offset, BucketTreeCompressedStorageEntry *out_cur_entry, u64 *out_next_entry_offset)
{
if (!visitor || !out_cur_entry || !out_next_entry_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeContext *ctx = visitor->bktr_ctx;
BucketTreeCompressedStorageEntry cur_entry = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0;
bool success = false;
/* Copy current Compressed Storage entry -- we'll move onto the next one, so we'll lose track of it. */
memcpy(&cur_entry, visitor->entry, sizeof(BucketTreeCompressedStorageEntry));
/* Validate Compressed Storage entry. */
if (!bktrIsOffsetWithinStorageRange(ctx, (u64)cur_entry.virtual_offset) || (u64)cur_entry.virtual_offset > offset || cur_entry.compression_type == BucketTreeCompressedStorageCompressionType_2 || \
cur_entry.compression_type > BucketTreeCompressedStorageCompressionType_LZ4 || (cur_entry.compression_type != BucketTreeCompressedStorageCompressionType_LZ4 && \
cur_entry.compression_level != 0) || (cur_entry.compression_type == BucketTreeCompressedStorageCompressionType_None && cur_entry.physical_size != BKTR_COMPRESSION_INVALID_PHYS_SIZE) || \
(cur_entry.compression_type != BucketTreeCompressedStorageCompressionType_None && cur_entry.physical_size == BKTR_COMPRESSION_INVALID_PHYS_SIZE) || \
(cur_entry.compression_type == BucketTreeCompressedStorageCompressionType_LZ4 && (cur_entry.compression_level < BKTR_COMPRESSION_LEVEL_MIN || \
cur_entry.compression_level > BKTR_COMPRESSION_LEVEL_MAX || !IS_ALIGNED(cur_entry.physical_offset, BKTR_COMPRESSION_PHYS_ALIGNMENT))))
{
LOG_DATA_ERROR(&cur_entry, sizeof(BucketTreeCompressedStorageEntry), "Invalid Compressed Storage entry! (#1). Entry dump:");
goto end;
}
cur_entry_offset = (u64)cur_entry.virtual_offset;
/* Check if we can retrieve the next entry. */
if (bktrVisitorCanMoveNext(visitor))
{
/* Retrieve the next entry. */
if (!bktrVisitorMoveNext(visitor))
{
LOG_MSG_ERROR("Failed to retrieve next Compressed Storage entry!");
goto end;
}
/* Validate Compressed Storage entry. */
BucketTreeCompressedStorageEntry *next_entry = (BucketTreeCompressedStorageEntry*)visitor->entry;
if (!bktrIsOffsetWithinStorageRange(ctx, (u64)next_entry->virtual_offset) || next_entry->compression_type == BucketTreeCompressedStorageCompressionType_2 || \
next_entry->compression_type > BucketTreeCompressedStorageCompressionType_LZ4 || \
(next_entry->compression_type != BucketTreeCompressedStorageCompressionType_LZ4 && next_entry->compression_level != 0) || \
(next_entry->compression_type == BucketTreeCompressedStorageCompressionType_None && next_entry->physical_size != BKTR_COMPRESSION_INVALID_PHYS_SIZE) || \
(next_entry->compression_type != BucketTreeCompressedStorageCompressionType_None && next_entry->physical_size == BKTR_COMPRESSION_INVALID_PHYS_SIZE) || \
(next_entry->compression_type == BucketTreeCompressedStorageCompressionType_LZ4 && (next_entry->compression_level < BKTR_COMPRESSION_LEVEL_MIN || \
next_entry->compression_level > BKTR_COMPRESSION_LEVEL_MAX || !IS_ALIGNED(next_entry->physical_offset, BKTR_COMPRESSION_PHYS_ALIGNMENT))))
{
LOG_DATA_ERROR(next_entry, sizeof(BucketTreeCompressedStorageEntry), "Invalid Compressed Storage entry! (#2). Entry dump:");
goto end;
}
/* Store next entry's virtual offset. */
next_entry_offset = (u64)next_entry->virtual_offset;
} else {
/* Set the next entry offset to the storage's end. */
next_entry_offset = ctx->end_offset;
}
/* Verify next entry offset. */
if (next_entry_offset <= cur_entry_offset || offset >= next_entry_offset)
{
LOG_MSG_ERROR("Invalid virtual offset for the Compressed Storage's next entry! (0x%lX).", next_entry_offset);
goto end;
}
/* Update variables. */
memcpy(out_cur_entry, &cur_entry, sizeof(BucketTreeCompressedStorageEntry));
*out_next_entry_offset = next_entry_offset;
success = true;
end:
return success;
}
static bool bktrReadCompressedStorage(BucketTreeVisitor *visitor, void *out, u64 read_size, u64 offset)
{
BucketTreeContext *ctx = visitor->bktr_ctx;
NcaFsSectionContext *nca_fs_ctx = ctx->nca_fs_ctx;
u64 compressed_storage_base_offset = nca_fs_ctx->hash_region.size;
BucketTreeCompressedStorageEntry cur_entry = {0};
BucketTreeSubStorageReadParams params = {0};
u64 cur_entry_offset = 0, next_entry_offset = 0, accum = 0;
bool success = false;
if (!out || !bktrIsValidSubStorage(&(ctx->substorages[0])) || ctx->substorages[0].type == BucketTreeSubStorageType_AesCtrEx || \
ctx->substorages[0].type == BucketTreeSubStorageType_Compressed || ctx->substorages[0].type >= BucketTreeSubStorageType_Count || (offset + read_size) > ctx->end_offset)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Perform Compressed Storage reads until we reach the requested size. */
while(accum < read_size)
{
u8 *out_ptr = ((u8*)out + accum);
const u64 compressed_block_offset = (offset + accum);
u64 compressed_block_size = 0, compressed_block_read_size = 0, compressed_block_read_offset = 0, read_size_diff = 0;
/* Get current Compressed Storage entry and the start offset for the next one. */
if (!bktrGetCompressedStorageEntryExtents(visitor, compressed_block_offset, &cur_entry, &next_entry_offset))
{
LOG_MSG_ERROR("Failed to get Compressed Storage entry extents for offset 0x%lX!", compressed_block_offset);
goto end;
}
/* Calculate Compressed Storage block size. */
cur_entry_offset = cur_entry.virtual_offset;
compressed_block_size = (!accum ? (next_entry_offset - offset) : (next_entry_offset - cur_entry_offset));
/* Calculate Compressed Storage block read size. */
read_size_diff = (read_size - accum);
compressed_block_read_size = (read_size_diff > compressed_block_size ? compressed_block_size : read_size_diff);
/* Perform read operation within the current Compressed Storage entry. */
switch(cur_entry.compression_type)
{
case BucketTreeCompressedStorageCompressionType_None:
{
/* We can randomly access data that's not compressed. */
/* Let's just read what we need. */
compressed_block_read_offset = (compressed_storage_base_offset + (compressed_block_offset - cur_entry_offset + (u64)cur_entry.physical_offset));
bktrInitializeSubStorageReadParams(&params, out_ptr, compressed_block_read_offset, compressed_block_read_size, 0, 0, false, ctx->storage_type);
if (!bktrReadSubStorage(&(ctx->substorages[0]), &params))
{
LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk from offset 0x%lX in non-compressed entry!", compressed_block_read_size, compressed_block_read_offset);
goto end;
}
break;
}
case BucketTreeCompressedStorageCompressionType_Zero:
{
/* Fill output buffer with zeroes. */
memset(out_ptr, 0, compressed_block_read_size);
break;
}
case BucketTreeCompressedStorageCompressionType_LZ4:
{
/* We can't randomly access data that's compressed. */
/* Let's be lazy and allocate memory for the full entry, read it and then decompress it. */
compressed_block_read_offset = (compressed_storage_base_offset + (u64)cur_entry.physical_offset);
const u64 compressed_data_size = (u64)cur_entry.physical_size;
const u64 decompressed_data_size = (next_entry_offset - cur_entry_offset);
const u64 buffer_size = LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(decompressed_data_size);
u8 *buffer = NULL, *read_ptr = NULL;
buffer = calloc(1, buffer_size);
if (!buffer)
{
LOG_MSG_ERROR("Failed to allocate 0x%lX-byte long buffer for data decompression! (0x%lX).", buffer_size, decompressed_data_size);
goto end;
}
/* Adjust read pointer. This will let us use the same buffer for storing read data and decompressing it. */
read_ptr = (buffer + (buffer_size - compressed_data_size));
bktrInitializeSubStorageReadParams(&params, read_ptr, compressed_block_read_offset, compressed_data_size, 0, 0, false, ctx->storage_type);
/* Read compressed LZ4 block. */
if (!bktrReadSubStorage(&(ctx->substorages[0]), &params))
{
LOG_MSG_ERROR("Failed to read 0x%lX-byte long compressed block from offset 0x%lX!", compressed_data_size, compressed_block_read_offset);
free(buffer);
goto end;
}
/* Decompress LZ4 block. */
int lz4_res = LZ4_decompress_safe((char*)read_ptr, (char*)buffer, (int)compressed_data_size, (int)buffer_size);
if (lz4_res != (int)decompressed_data_size)
{
LOG_MSG_ERROR("Failed to decompress 0x%lX-byte long compressed block! (%d).", compressed_data_size, lz4_res);
free(buffer);
goto end;
}
/* Copy the data we need. */
memcpy(out_ptr, buffer + (compressed_block_offset - cur_entry_offset), compressed_block_read_size);
/* Free allocated buffer. */
free(buffer);
break;
}
default:
break;
}
/* Update accumulator. */
accum += compressed_block_read_size;
}
/* Update flag. */
success = true;
end:
return success;
}
static bool bktrReadSubStorage(BucketTreeSubStorage *substorage, BucketTreeSubStorageReadParams *params)
{
if (!bktrIsValidSubStorage(substorage) || !params || !params->buffer || !params->size)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
bool success = false;
if (substorage->type == BucketTreeSubStorageType_Regular)
{
NcaFsSectionContext *nca_fs_ctx = substorage->nca_fs_ctx;
if (params->parent_storage_type == BucketTreeStorageType_AesCtrEx)
{
/* Perform a read on the target NCA using AesCtrEx crypto. */
success = ncaReadAesCtrExStorage(nca_fs_ctx, params->buffer, params->size, params->offset, params->ctr_val, params->aes_ctr_ex_crypt);
} else {
/* Make sure to handle Sparse virtual offsets if we need to. */
if (params->parent_storage_type == BucketTreeStorageType_Sparse && params->virtual_offset) nca_fs_ctx->cur_sparse_virtual_offset = params->virtual_offset;
/* Perform a read on the target NCA. */
success = ncaReadFsSection(nca_fs_ctx, params->buffer, params->size, params->offset);
}
} else {
/* Perform a read on the target BucketTree storage. */
success = bktrReadStorage(substorage->bktr_ctx, params->buffer, params->size, params->offset);
}
if (!success) LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk from offset 0x%lX!", params->size, params->offset);
return success;
}
NX_INLINE void bktrInitializeSubStorageReadParams(BucketTreeSubStorageReadParams *out, void *buffer, u64 offset, u64 size, u64 virtual_offset, u32 ctr_val, bool aes_ctr_ex_crypt, u8 parent_storage_type)
{
out->buffer = buffer;
out->offset = offset;
out->size = size;
out->virtual_offset = ((virtual_offset && parent_storage_type == BucketTreeStorageType_Sparse) ? virtual_offset : 0);
out->ctr_val = ((ctr_val && parent_storage_type == BucketTreeStorageType_AesCtrEx) ? ctr_val : 0);
out->aes_ctr_ex_crypt = ((aes_ctr_ex_crypt && parent_storage_type == BucketTreeStorageType_AesCtrEx) ? true : false);
out->parent_storage_type = parent_storage_type;
}
static bool bktrVerifyBucketInfo(NcaBucketInfo *bucket, u64 node_size, u64 entry_size, u64 *out_node_storage_size, u64 *out_entry_storage_size)
{
/* Verify bucket info properties. */
if (!ncaVerifyBucketInfo(bucket)) return false;
/* Validate table size. */
u64 node_storage_size = bktrQueryNodeStorageSize(node_size, entry_size, bucket->header.entry_count);
u64 entry_storage_size = bktrQueryEntryStorageSize(node_size, entry_size, bucket->header.entry_count);
u64 calc_table_size = (node_storage_size + entry_storage_size);
bool success = (bucket->size >= calc_table_size);
if (success)
{
if (out_node_storage_size) *out_node_storage_size = node_storage_size;
if (out_entry_storage_size) *out_entry_storage_size = entry_storage_size;
} else {
LOG_MSG_ERROR("Calculated table size exceeds the provided bucket's table size! (0x%lX > 0x%lX).", calc_table_size, bucket->size);
}
return success;
}
static bool bktrValidateTableOffsetNode(const BucketTreeTable *table, u64 node_size, u64 entry_size, u32 entry_count, u64 *out_start_offset, u64 *out_end_offset)
{
const BucketTreeOffsetNode *offset_node = &(table->offset_node);
const BucketTreeNodeHeader *node_header = &(offset_node->header);
/* Verify offset node header. */
if (!bktrVerifyNodeHeader(node_header, 0, node_size, sizeof(u64)))
{
LOG_MSG_ERROR("Bucket Tree Offset Node header verification failed!");
return false;
}
/* Validate offsets. */
u32 offset_count = bktrGetOffsetCount(node_size);
u32 entry_set_count = bktrGetEntrySetCount(node_size, entry_size, entry_count);
const u64 start_offset = ((offset_count < entry_set_count && node_header->count < offset_count) ? *bktrGetOffsetNodeEnd(offset_node) : *bktrGetOffsetNodeBegin(offset_node));
u64 end_offset = node_header->offset;
if (start_offset > *bktrGetOffsetNodeBegin(offset_node) || start_offset >= end_offset || node_header->count != entry_set_count)
{
LOG_MSG_ERROR("Invalid Bucket Tree Offset Node!");
return false;
}
/* Update output offsets. */
if (out_start_offset) *out_start_offset = start_offset;
if (out_end_offset) *out_end_offset = end_offset;
return true;
}
NX_INLINE bool bktrVerifyNodeHeader(const BucketTreeNodeHeader *node_header, u32 node_index, u64 node_size, u64 entry_size)
{
return (node_header && node_header->index == node_index && entry_size > 0 && node_size >= (entry_size + BKTR_NODE_HEADER_SIZE) && \
node_header->count > 0 && node_header->count <= ((node_size - BKTR_NODE_HEADER_SIZE) / entry_size));
}
static u64 bktrQueryNodeStorageSize(u64 node_size, u64 entry_size, u32 entry_count)
{
if (entry_size < sizeof(u64) || node_size < (entry_size + BKTR_NODE_HEADER_SIZE) || node_size < BKTR_NODE_SIZE_MIN || node_size > BKTR_NODE_SIZE_MAX || \
!IS_POWER_OF_TWO(node_size) || !entry_count) return 0;
return ((1 + bktrGetNodeL2Count(node_size, entry_size, entry_count)) * node_size);
}
static u64 bktrQueryEntryStorageSize(u64 node_size, u64 entry_size, u32 entry_count)
{
if (entry_size < sizeof(u64) || node_size < (entry_size + BKTR_NODE_HEADER_SIZE) || node_size < BKTR_NODE_SIZE_MIN || node_size > BKTR_NODE_SIZE_MAX || \
!IS_POWER_OF_TWO(node_size) || !entry_count) return 0;
return ((u64)bktrGetEntrySetCount(node_size, entry_size, entry_count) * node_size);
}
NX_INLINE u32 bktrGetEntryCount(u64 node_size, u64 entry_size)
{
return (u32)((node_size - BKTR_NODE_HEADER_SIZE) / entry_size);
}
NX_INLINE u32 bktrGetOffsetCount(u64 node_size)
{
return (u32)((node_size - BKTR_NODE_HEADER_SIZE) / sizeof(u64));
}
NX_INLINE u32 bktrGetEntrySetCount(u64 node_size, u64 entry_size, u32 entry_count)
{
u32 entry_count_per_node = bktrGetEntryCount(node_size, entry_size);
return DIVIDE_UP(entry_count, entry_count_per_node);
}
NX_INLINE u32 bktrGetNodeL2Count(u64 node_size, u64 entry_size, u32 entry_count)
{
u32 offset_count_per_node = bktrGetOffsetCount(node_size);
u32 entry_set_count = bktrGetEntrySetCount(node_size, entry_size, entry_count);
if (entry_set_count <= offset_count_per_node) return 0;
u32 node_l2_count = DIVIDE_UP(entry_set_count, offset_count_per_node);
if (node_l2_count > offset_count_per_node) return 0;
return DIVIDE_UP(entry_set_count - (offset_count_per_node - (node_l2_count - 1)), offset_count_per_node);
}
NX_INLINE const void *bktrGetNodeArray(const BucketTreeNodeHeader *node_header)
{
return ((const u8*)node_header + BKTR_NODE_HEADER_SIZE);
}
NX_INLINE const u64 *bktrGetOffsetNodeArray(const BucketTreeOffsetNode *offset_node)
{
return (const u64*)bktrGetNodeArray(&(offset_node->header));
}
NX_INLINE const u64 *bktrGetOffsetNodeBegin(const BucketTreeOffsetNode *offset_node)
{
return bktrGetOffsetNodeArray(offset_node);
}
NX_INLINE const u64 *bktrGetOffsetNodeEnd(const BucketTreeOffsetNode *offset_node)
{
return (bktrGetOffsetNodeArray(offset_node) + offset_node->header.count);
}
static bool bktrFindStorageEntry(BucketTreeContext *ctx, u64 virtual_offset, BucketTreeVisitor *out_visitor)
{
if (!ctx || virtual_offset >= ctx->storage_table->offset_node.header.offset || !out_visitor)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Get the node. */
const BucketTreeOffsetNode *offset_node = &(ctx->storage_table->offset_node);
/* Get the entry node index. */
u32 entry_set_index = 0;
const u64 *start_ptr = NULL, *end_ptr = NULL;
bool success = false;
if (bktrIsExistOffsetL2OnL1(ctx) && virtual_offset < *bktrGetOffsetNodeBegin(offset_node))
{
start_ptr = bktrGetOffsetNodeEnd(offset_node);
end_ptr = (bktrGetOffsetNodeBegin(offset_node) + ctx->offset_count);
if (!bktrGetTreeNodeEntryIndex(start_ptr, end_ptr, virtual_offset, &entry_set_index))
{
LOG_MSG_ERROR("Failed to retrieve Bucket Tree Node entry index for virtual offset 0x%lX! (#1).", virtual_offset);
goto end;
}
} else {
start_ptr = bktrGetOffsetNodeBegin(offset_node);
end_ptr = bktrGetOffsetNodeEnd(offset_node);
if (!bktrGetTreeNodeEntryIndex(start_ptr, end_ptr, virtual_offset, &entry_set_index))
{
LOG_MSG_ERROR("Failed to retrieve Bucket Tree Node entry index for virtual offset 0x%lX! (#2).", virtual_offset);
goto end;
}
if (bktrIsExistL2(ctx))
{
u32 node_index = entry_set_index;
if (node_index >= ctx->offset_count || !bktrFindEntrySet(ctx, &entry_set_index, virtual_offset, node_index))
{
LOG_MSG_ERROR("Invalid L2 Bucket Tree Node index!");
goto end;
}
}
}
/* Validate the entry set index. */
if (entry_set_index >= ctx->entry_set_count)
{
LOG_MSG_ERROR("Invalid Bucket Tree Node offset!");
goto end;
}
/* Find the entry. */
success = bktrFindEntry(ctx, out_visitor, virtual_offset, entry_set_index);
if (!success) LOG_MSG_ERROR("Failed to retrieve storage entry!");
end:
return success;
}
static bool bktrGetTreeNodeEntryIndex(const u64 *start_ptr, const u64 *end_ptr, u64 virtual_offset, u32 *out_index)
{
if (!start_ptr || !end_ptr || start_ptr >= end_ptr || !out_index)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
u64 *pos = (u64*)start_ptr;
u32 index = 0;
while(pos < end_ptr)
{
if (start_ptr < pos)
{
/* Stop looking if we have found the right offset node. */
if (*pos > virtual_offset) break;
/* Increment index. */
index++;
}
/* Increment offset node pointer. */
pos++;
}
/* Update output index. */
*out_index = index;
return true;
}
static bool bktrGetEntryNodeEntryIndex(const BucketTreeNodeHeader *node_header, u64 entry_size, u64 virtual_offset, u32 *out_index)
{
if (!node_header || !out_index)
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
/* Initialize storage node and find the index for our virtual offset. */
BucketTreeStorageNode storage_node = {0};
bktrInitializeStorageNode(&storage_node, entry_size, node_header->count);
bktrStorageNodeFind(&storage_node, node_header, virtual_offset);
/* Validate index. */
if (storage_node.index == UINT32_MAX)
{
LOG_MSG_ERROR("Unable to find index for virtual offset 0x%lX!", virtual_offset);
return false;
}
/* Update output index. */
*out_index = storage_node.index;
return true;
}
static bool bktrFindEntrySet(BucketTreeContext *ctx, u32 *out_index, u64 virtual_offset, u32 node_index)
{
/* Get offset node header. */
const BucketTreeNodeHeader *node_header = bktrGetTreeNodeHeader(ctx, node_index);
if (!node_header)
{
LOG_MSG_ERROR("Failed to retrieve offset node header at index 0x%X!", node_index);
return false;
}
/* Get offset node entry index. */
u32 offset_index = 0;
if (!bktrGetEntryNodeEntryIndex(node_header, sizeof(u64), virtual_offset, &offset_index))
{
LOG_MSG_ERROR("Failed to get offset node entry index!");
return false;
}
/* Update output index. */
*out_index = bktrGetEntrySetIndex(ctx, node_header->index, offset_index);
return true;
}
static const BucketTreeNodeHeader *bktrGetTreeNodeHeader(BucketTreeContext *ctx, u32 node_index)
{
/* Calculate offset node extents. */
const u64 node_size = ctx->node_size;
const u64 node_offset = ((node_index + 1) * node_size);
if ((node_offset + BKTR_NODE_HEADER_SIZE) > ctx->node_storage_size)
{
LOG_MSG_ERROR("Invalid Bucket Tree Offset Node offset!");
return NULL;
}
/* Get offset node header. */
const BucketTreeNodeHeader *node_header = (const BucketTreeNodeHeader*)((u8*)ctx->storage_table + node_offset);
/* Validate offset node header. */
if (!bktrVerifyNodeHeader(node_header, node_index, node_size, sizeof(u64)))
{
LOG_MSG_ERROR("Bucket Tree Offset Node header verification failed!");
return NULL;
}
return node_header;
}
NX_INLINE u32 bktrGetEntrySetIndex(BucketTreeContext *ctx, u32 node_index, u32 offset_index)
{
return (u32)((ctx->offset_count - ctx->storage_table->offset_node.header.count) + (ctx->offset_count * node_index) + offset_index);
}
static bool bktrFindEntry(BucketTreeContext *ctx, BucketTreeVisitor *out_visitor, u64 virtual_offset, u32 entry_set_index)
{
/* Get entry node header. */
const BucketTreeNodeHeader *entry_set_header = bktrGetEntryNodeHeader(ctx, entry_set_index);
if (!entry_set_header)
{
LOG_MSG_ERROR("Failed to retrieve entry node header at index 0x%X!", entry_set_index);
return false;
}
/* Calculate entry node extents. */
const u64 entry_size = ctx->entry_size;
const u64 entry_set_size = ctx->node_size;
const u64 entry_set_offset = (ctx->node_storage_size + (entry_set_index * entry_set_size));
/* Get entry node entry index. */
u32 entry_index = 0;
if (!bktrGetEntryNodeEntryIndex(entry_set_header, entry_size, virtual_offset, &entry_index))
{
LOG_MSG_ERROR("Failed to get entry node entry index!");
return false;
}
/* Get entry node entry offset and validate it. */
u64 entry_offset = bktrGetEntryNodeEntryOffset(entry_set_offset, entry_size, entry_index);
if ((entry_offset + entry_size) > (ctx->node_storage_size + ctx->entry_storage_size))
{
LOG_MSG_ERROR("Invalid Bucket Tree Entry Node entry offset!");
return false;
}
/* Update output visitor. */
memset(out_visitor, 0, sizeof(BucketTreeVisitor));
out_visitor->bktr_ctx = ctx;
memcpy(&(out_visitor->entry_set), entry_set_header, sizeof(BucketTreeEntrySetHeader));
out_visitor->entry_index = entry_index;
out_visitor->entry = ((u8*)ctx->storage_table + entry_offset);
return true;
}
static const BucketTreeNodeHeader *bktrGetEntryNodeHeader(BucketTreeContext *ctx, u32 entry_set_index)
{
/* Calculate entry node extents. */
const u64 entry_size = ctx->entry_size;
const u64 entry_set_size = ctx->node_size;
const u64 entry_set_offset = (ctx->node_storage_size + (entry_set_index * entry_set_size));
if ((entry_set_offset + BKTR_NODE_HEADER_SIZE) > (ctx->node_storage_size + ctx->entry_storage_size))
{
LOG_MSG_ERROR("Invalid Bucket Tree Entry Node offset!");
return NULL;
}
/* Get entry node header. */
const BucketTreeNodeHeader *entry_set_header = (const BucketTreeNodeHeader*)((u8*)ctx->storage_table + entry_set_offset);
/* Validate entry node header. */
if (!bktrVerifyNodeHeader(entry_set_header, entry_set_index, entry_set_size, entry_size))
{
LOG_MSG_ERROR("Bucket Tree Entry Node header verification failed!");
return NULL;
}
return entry_set_header;
}
NX_INLINE u64 bktrGetEntryNodeEntryOffset(u64 entry_set_offset, u64 entry_size, u32 entry_index)
{
return (entry_set_offset + BKTR_NODE_HEADER_SIZE + ((u64)entry_index * entry_size));
}
NX_INLINE u64 bktrGetEntryNodeEntryOffsetByIndex(u32 entry_set_index, u64 node_size, u64 entry_size, u32 entry_index)
{
return bktrGetEntryNodeEntryOffset((u64)entry_set_index * node_size, entry_size, entry_index);
}
NX_INLINE bool bktrIsExistL2(BucketTreeContext *ctx)
{
return (ctx->offset_count < ctx->entry_set_count);
}
NX_INLINE bool bktrIsExistOffsetL2OnL1(BucketTreeContext *ctx)
{
return (bktrIsExistL2(ctx) && ctx->storage_table->offset_node.header.count < ctx->offset_count);
}
static void bktrInitializeStorageNode(BucketTreeStorageNode *out, u64 entry_size, u32 entry_count)
{
out->start.offset = BKTR_NODE_HEADER_SIZE;
out->start.stride = (u32)entry_size;
out->count = entry_count;
out->index = UINT32_MAX;
}
static void bktrStorageNodeFind(BucketTreeStorageNode *storage_node, const BucketTreeNodeHeader *node_header, u64 virtual_offset)
{
/* Check for edge case, short circuit. */
if (storage_node->count == 1)
{
storage_node->index = 0;
return;
}
/* Perform a binary search. */
u32 entry_count = storage_node->count, low = 0, high = (entry_count - 1);
BucketTreeStorageNodeOffset *start = &(storage_node->start);
while(low <= high)
{
/* Get the offset to the middle entry within our current lookup range. */
u32 half = ((low + high) / 2);
BucketTreeStorageNodeOffset mid = bktrStorageNodeOffsetAdd(start, half);
/* Check middle entry's virtual offset. */
if (bktrStorageNodeOffsetGetEntryVirtualOffset(node_header, &mid) > virtual_offset)
{
/* Update our upper limit. */
high = (half - 1);
} else {
/* Check for success. */
BucketTreeStorageNodeOffset pos = bktrStorageNodeOffsetAdd(&mid, 1);
if (half == (entry_count - 1) || bktrStorageNodeOffsetGetEntryVirtualOffset(node_header, &pos) > virtual_offset)
{
storage_node->index = half;
break;
}
/* Update our lower limit. */
low = (half + 1);
}
}
}
NX_INLINE BucketTreeStorageNodeOffset bktrStorageNodeOffsetAdd(BucketTreeStorageNodeOffset *ofs, u64 value)
{
BucketTreeStorageNodeOffset out = { ofs->offset + (value * (u64)ofs->stride), ofs->stride };
return out;
}
NX_INLINE const u64 bktrStorageNodeOffsetGetEntryVirtualOffset(const BucketTreeNodeHeader *node_header, const BucketTreeStorageNodeOffset *ofs)
{
return *((const u64*)((const u8*)node_header + ofs->offset));
}
NX_INLINE bool bktrVisitorIsValid(BucketTreeVisitor *visitor)
{
return (visitor && visitor->bktr_ctx && visitor->entry_index != UINT32_MAX);
}
NX_INLINE bool bktrVisitorCanMoveNext(BucketTreeVisitor *visitor)
{
return (bktrVisitorIsValid(visitor) && ((visitor->entry_index + 1) < visitor->entry_set.header.count || (visitor->entry_set.header.index + 1) < visitor->bktr_ctx->entry_set_count));
}
static bool bktrVisitorMoveNext(BucketTreeVisitor *visitor)
{
if (!bktrVisitorIsValid(visitor))
{
LOG_MSG_ERROR("Invalid parameters!");
return false;
}
BucketTreeContext *ctx = visitor->bktr_ctx;
BucketTreeEntrySetHeader *entry_set = &(visitor->entry_set);
u32 entry_index = (visitor->entry_index + 1);
bool success = false;
/* Invalidate index. */
visitor->entry_index = UINT32_MAX;
if (entry_index == entry_set->header.count)
{
/* We have reached the end of this entry node. Let's try to retrieve the first entry from the next one. */
const u32 entry_set_index = (entry_set->header.index + 1);
if (entry_set_index >= ctx->entry_set_count)
{
LOG_MSG_ERROR("Error: attempting to move visitor into non-existing Bucket Tree Entry Node!");
goto end;
}
/* Read next entry set header. */
const u64 end_offset = entry_set->header.offset;
const u64 entry_set_size = ctx->node_size;
const u64 entry_set_offset = (ctx->node_storage_size + (entry_set_index * entry_set_size));
if ((entry_set_offset + sizeof(BucketTreeEntrySetHeader)) > (ctx->node_storage_size + ctx->entry_storage_size))
{
LOG_MSG_ERROR("Invalid Bucket Tree Entry Node offset!");
goto end;
}
memcpy(entry_set, (u8*)ctx->storage_table + entry_set_offset, sizeof(BucketTreeEntrySetHeader));
/* Validate next entry set header. */
if (!bktrVerifyNodeHeader(&(entry_set->header), entry_set_index, entry_set_size, ctx->entry_size) || entry_set->start != end_offset || \
entry_set->start >= entry_set->header.offset)
{
LOG_MSG_ERROR("Bucket Tree Entry Node header verification failed!");
goto end;
}
/* Update entry index. */
entry_index = 0;
}
/* Get the new entry. */
const u64 entry_size = ctx->entry_size;
const u64 entry_offset = (ctx->node_storage_size + bktrGetEntryNodeEntryOffsetByIndex(entry_set->header.index, ctx->node_size, entry_size, entry_index));
if ((entry_offset + entry_size) > (ctx->node_storage_size + ctx->entry_storage_size))
{
LOG_MSG_ERROR("Invalid Bucket Tree Entry Node entry offset!");
goto end;
}
/* Update visitor. */
visitor->entry_index = entry_index;
visitor->entry = ((u8*)ctx->storage_table + entry_offset);
/* Update return value. */
success = true;
end:
return success;
}