1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-23 20:32:10 +00:00
Atmosphere/exosphere/program/source/smc/secmon_smc_rsa.cpp

369 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "../secmon_key_storage.hpp"
#include "../secmon_page_mapper.hpp"
#include "secmon_smc_aes.hpp"
#include "secmon_smc_rsa.hpp"
#include "secmon_smc_se_lock.hpp"
namespace ams::secmon::smc {
namespace {
struct ModularExponentiateByStorageKeyOption {
using Mode = util::BitPack32::Field<0, 2, u32>;
using Reserved = util::BitPack32::Field<2, 30, u32>;
};
struct PrepareEsDeviceUniqueKeyOption {
using KeyGeneration = util::BitPack32::Field<0, 6, int>;
using Type = util::BitPack32::Field<6, 1, EsCommonKeyType>;
using Reserved = util::BitPack32::Field<7, 25, u32>;
};
constexpr const u8 ModularExponentiateByStorageKeyTable[] = {
static_cast<u8>(ImportRsaKey_Lotus),
static_cast<u8>(ImportRsaKey_Ssl),
static_cast<u8>(ImportRsaKey_EsClientCert),
};
constexpr size_t ModularExponentiateByStorageKeyTableSize = util::size(ModularExponentiateByStorageKeyTable);
2020-06-12 03:17:20 +01:00
consteval u32 GetModeForImportRsaKey(ImportRsaKey import_key) {
for (size_t i = 0; i < ModularExponentiateByStorageKeyTableSize; ++i) {
if (static_cast<ImportRsaKey>(ModularExponentiateByStorageKeyTable[i]) == import_key) {
return i;
}
}
AMS_ASSUME(false);
}
class PrepareEsDeviceUniqueKeyAsyncArguments {
private:
int generation;
EsCommonKeyType type;
u8 label_digest[crypto::Sha256Generator::HashSize];
public:
void Set(int gen, EsCommonKeyType t, const u8 ld[crypto::Sha256Generator::HashSize]) {
this->generation = gen;
this->type = t;
std::memcpy(this->label_digest, ld, sizeof(this->label_digest));
}
int GetKeyGeneration() const { return this->generation; }
EsCommonKeyType GetCommonKeyType() const { return this->type; }
void GetLabelDigest(u8 dst[crypto::Sha256Generator::HashSize]) const { std::memcpy(dst, this->label_digest, sizeof(this->label_digest)); }
};
class ModularExponentiateByStorageKeyAsyncArguments {
private:
u8 msg[se::RsaSize];
public:
void Set(const void *m, size_t m_size) {
2020-08-17 22:39:18 +01:00
AMS_UNUSED(m_size);
std::memcpy(this->msg, m, sizeof(this->msg));
}
const u8 *GetMessage() const { return this->msg; }
};
constinit SmcResult g_exp_mod_result = SmcResult::Success;
constinit bool g_test_exp_mod_public = false;
constinit int g_test_exp_mod_slot = pkg1::RsaKeySlot_Temporary;
constinit ImportRsaKey g_test_exp_mod_key = {};
constinit union {
ModularExponentiateByStorageKeyAsyncArguments modular_exponentiate_by_storage_key;
PrepareEsDeviceUniqueKeyAsyncArguments prepare_es_device_unique_key;
} g_async_arguments;
ALWAYS_INLINE ModularExponentiateByStorageKeyAsyncArguments &GetModularExponentiateByStorageKeyAsyncArguments() {
return g_async_arguments.modular_exponentiate_by_storage_key;
}
ALWAYS_INLINE PrepareEsDeviceUniqueKeyAsyncArguments &GetPrepareEsDeviceUniqueKeyAsyncArguments() {
return g_async_arguments.prepare_es_device_unique_key;
}
void SecurityEngineDoneHandler() {
/* End the asynchronous operation. */
g_exp_mod_result = SmcResult::Success;
EndAsyncOperation();
}
void TestRsaPublicKey(ImportRsaKey which, int slot, const void *mod, size_t mod_size, se::DoneHandler handler) {
/* Declare a buffer for our test message. */
u8 msg[se::RsaSize];
std::memset(msg, 'D', sizeof(msg));
/* Provisionally import the modulus. */
ImportRsaKeyModulusProvisionally(which, mod, mod_size);
/* Load the provisional public key into the slot. */
LoadProvisionalRsaPublicKey(slot, which);
/* Perform the test exponentiation. */
se::ModularExponentiateAsync(slot, msg, sizeof(msg), handler);
}
void TestRsaPrivateKey(ImportRsaKey which, int slot, se::DoneHandler handler) {
/* Get the result of the public key test. */
u8 msg[se::RsaSize];
se::GetRsaResult(msg, sizeof(msg));
/* Load the provisional private key into the slot. */
LoadProvisionalRsaKey(slot, which);
/* Perform the test exponentiation. */
se::ModularExponentiateAsync(slot, msg, sizeof(msg), handler);
}
void VerifyTestRsaKeyResult(ImportRsaKey which) {
/* Get the result of the test. */
u8 msg[se::RsaSize];
se::GetRsaResult(msg, sizeof(msg));
/* Validate the result. */
const bool is_valid = (msg[0] == 'D') & (crypto::IsSameBytes(msg, msg + 1, sizeof(msg) - 1));
/* If the test passes, the key is no longer provisional. */
if (is_valid) {
CommitRsaKeyModulus(which);
}
}
void TestRsaKeyDoneHandler() {
if (g_test_exp_mod_public) {
/* If we're testing the public key, we still have another exponentiation to do to test the private key. */
g_test_exp_mod_public = false;
/* Test the private key. */
TestRsaPrivateKey(g_test_exp_mod_key, g_test_exp_mod_slot, TestRsaKeyDoneHandler);
} else {
/* We're testing the private key, so validate the result. */
VerifyTestRsaKeyResult(g_test_exp_mod_key);
/* If the test passed, we can proceed to perform the intended exponentiation. */
if (LoadRsaKey(g_test_exp_mod_slot, g_test_exp_mod_key)) {
se::ModularExponentiateAsync(pkg1::RsaKeySlot_Temporary, GetModularExponentiateByStorageKeyAsyncArguments().GetMessage(), se::RsaSize, SecurityEngineDoneHandler);
} else {
/* The test failed, so end the asynchronous operation. */
g_exp_mod_result = SmcResult::InvalidArgument;
EndAsyncOperation();
}
}
}
SmcResult ModularExponentiateImpl(SmcArguments &args) {
/* Decode arguments. */
const uintptr_t msg_address = args.r[1];
const uintptr_t exp_address = args.r[2];
const uintptr_t mod_address = args.r[3];
const size_t exp_size = args.r[4];
/* Validate arguments. */
SMC_R_UNLESS(util::IsAligned(exp_size, sizeof(u32)), InvalidArgument);
SMC_R_UNLESS(exp_size <= se::RsaSize, InvalidArgument);
/* Copy the message and modulus from the user. */
alignas(8) u8 msg[se::RsaSize];
alignas(8) u8 exp[se::RsaSize];
alignas(8) u8 mod[se::RsaSize];
{
UserPageMapper mapper(msg_address);
SMC_R_UNLESS(mapper.Map(), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(msg, msg_address, sizeof(msg)), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(exp, exp_address, exp_size), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(mod, mod_address, sizeof(mod)), InvalidArgument);
}
/* We're performing an operation, so set the result to busy. */
g_exp_mod_result = SmcResult::Busy;
/* Load the key into the temporary keyslot. */
se::SetRsaKey(pkg1::RsaKeySlot_Temporary, mod, sizeof(mod), exp, exp_size);
/* Begin the asynchronous exponentiation. */
se::ModularExponentiateAsync(pkg1::RsaKeySlot_Temporary, msg, sizeof(msg), SecurityEngineDoneHandler);
return SmcResult::Success;
}
SmcResult ModularExponentiateByStorageKeyImpl(SmcArguments &args) {
/* Decode arguments. */
const uintptr_t msg_address = args.r[1];
const uintptr_t mod_address = args.r[2];
const util::BitPack32 option = { static_cast<u32>(args.r[3]) };
2020-06-12 03:17:20 +01:00
const auto mode = GetTargetFirmware() >= TargetFirmware_5_0_0 ? option.Get<ModularExponentiateByStorageKeyOption::Mode>() : GetModeForImportRsaKey(ImportRsaKey_Lotus);
const auto reserved = option.Get<PrepareEsDeviceUniqueKeyOption::Reserved>();
/* Validate arguments. */
SMC_R_UNLESS(reserved == 0, InvalidArgument);
SMC_R_UNLESS(mode < ModularExponentiateByStorageKeyTableSize, InvalidArgument);
/* Convert the mode to an import key. */
const auto import_key = static_cast<ImportRsaKey>(ModularExponentiateByStorageKeyTable[mode]);
/* Copy the message and modulus from the user. */
alignas(8) u8 msg[se::RsaSize];
alignas(8) u8 mod[se::RsaSize];
{
UserPageMapper mapper(msg_address);
SMC_R_UNLESS(mapper.Map(), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(msg, msg_address, sizeof(msg)), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(mod, mod_address, sizeof(mod)), InvalidArgument);
}
/* We're performing an operation, so set the result to busy. */
g_exp_mod_result = SmcResult::Busy;
/* In the ideal case, the key pair is already verified. If it is, we can use it directly. */
if (LoadRsaKey(pkg1::RsaKeySlot_Temporary, import_key)) {
se::ModularExponentiateAsync(pkg1::RsaKeySlot_Temporary, msg, sizeof(msg), SecurityEngineDoneHandler);
} else {
/* Set the async arguments. */
GetModularExponentiateByStorageKeyAsyncArguments().Set(msg, sizeof(msg));
/* Test the rsa key. */
g_test_exp_mod_slot = pkg1::RsaKeySlot_Temporary;
g_test_exp_mod_key = import_key;
g_test_exp_mod_public = true;
TestRsaPublicKey(import_key, pkg1::RsaKeySlot_Temporary, mod, sizeof(mod), TestRsaKeyDoneHandler);
}
return SmcResult::Success;
}
SmcResult PrepareEsDeviceUniqueKeyImpl(SmcArguments &args) {
/* Decode arguments. */
u8 label_digest[crypto::Sha256Generator::HashSize];
const uintptr_t msg_address = args.r[1];
const uintptr_t mod_address = args.r[2];
std::memcpy(label_digest, std::addressof(args.r[3]), sizeof(label_digest));
const util::BitPack32 option = { static_cast<u32>(args.r[7]) };
2020-06-12 03:17:20 +01:00
const auto generation = GetTargetFirmware() >= TargetFirmware_3_0_0 ? std::max<int>(pkg1::KeyGeneration_1_0_0, option.Get<PrepareEsDeviceUniqueKeyOption::KeyGeneration>() - 1) : pkg1::KeyGeneration_1_0_0;
const auto type = option.Get<PrepareEsDeviceUniqueKeyOption::Type>();
const auto reserved = option.Get<PrepareEsDeviceUniqueKeyOption::Reserved>();
/* Validate arguments. */
SMC_R_UNLESS(reserved == 0, InvalidArgument);
SMC_R_UNLESS(pkg1::IsValidKeyGeneration(generation), InvalidArgument);
SMC_R_UNLESS(generation <= GetKeyGeneration(), InvalidArgument);
SMC_R_UNLESS(type < EsCommonKeyType_Count, InvalidArgument);
/* Copy the message and modulus from the user. */
alignas(8) u8 msg[se::RsaSize];
alignas(8) u8 mod[se::RsaSize];
{
UserPageMapper mapper(msg_address);
SMC_R_UNLESS(mapper.Map(), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(msg, msg_address, sizeof(msg)), InvalidArgument);
SMC_R_UNLESS(mapper.CopyFromUser(mod, mod_address, sizeof(mod)), InvalidArgument);
}
/* We're performing an operation, so set the result to busy. */
g_exp_mod_result = SmcResult::Busy;
/* Set the async arguments. */
GetPrepareEsDeviceUniqueKeyAsyncArguments().Set(generation, type, label_digest);
/* Load the es drm key into the security engine. */
SMC_R_UNLESS(LoadRsaKey(pkg1::RsaKeySlot_Temporary, ImportRsaKey_EsDrmCert), NotInitialized);
/* Trigger the asynchronous modular exponentiation. */
se::ModularExponentiateAsync(pkg1::RsaKeySlot_Temporary, msg, sizeof(msg), SecurityEngineDoneHandler);
return SmcResult::Success;
}
SmcResult GetModularExponentiateResult(void *dst, size_t dst_size) {
/* Validate state. */
SMC_R_TRY(g_exp_mod_result);
SMC_R_UNLESS(dst_size == se::RsaSize, InvalidArgument);
/* We want to relinquish our security engine lock at the end of scope. */
ON_SCOPE_EXIT { UnlockSecurityEngine(); };
/* Get the result of the exponentiation. */
se::GetRsaResult(dst, se::RsaSize);
return SmcResult::Success;
}
SmcResult GetPrepareEsDeviceUniqueKeyResult(void *dst, size_t dst_size) {
/* Declare variables. */
u8 key_source[se::AesBlockSize];
u8 key[se::AesBlockSize];
u8 access_key[se::AesBlockSize];
/* Validate state. */
SMC_R_TRY(g_exp_mod_result);
SMC_R_UNLESS(dst_size == sizeof(access_key), InvalidArgument);
/* We want to relinquish our security engine lock at the end of scope. */
ON_SCOPE_EXIT { UnlockSecurityEngine(); };
/* Get the async args. */
const auto &async_args = GetPrepareEsDeviceUniqueKeyAsyncArguments();
/* Get the exponentiation output. */
alignas(8) u8 msg[se::RsaSize];
se::GetRsaResult(msg, sizeof(msg));
/* Decode the key. */
{
/* Get the label digest. */
u8 label_digest[crypto::Sha256Generator::HashSize];
async_args.GetLabelDigest(label_digest);
/* Decode the key source. */
const size_t key_source_size = se::DecodeRsaOaepSha256(key_source, sizeof(key_source), msg, sizeof(msg), label_digest, sizeof(label_digest));
SMC_R_UNLESS(key_source_size == sizeof(key_source), InvalidArgument);
}
/* Decrypt the key. */
DecryptWithEsCommonKey(key, sizeof(key), key_source, sizeof(key_source), async_args.GetCommonKeyType(), async_args.GetKeyGeneration());
PrepareEsAesKey(access_key, sizeof(access_key), key, sizeof(key));
/* Copy the access key to output. */
std::memcpy(dst, access_key, sizeof(access_key));
return SmcResult::Success;
}
}
2020-05-14 23:57:22 +01:00
SmcResult SmcModularExponentiate(SmcArguments &args) {
return LockSecurityEngineAndInvokeAsync(args, ModularExponentiateImpl, GetModularExponentiateResult);
}
2020-05-14 23:57:22 +01:00
SmcResult SmcModularExponentiateByStorageKey(SmcArguments &args) {
return LockSecurityEngineAndInvokeAsync(args, ModularExponentiateByStorageKeyImpl, GetModularExponentiateResult);
}
SmcResult SmcPrepareEsDeviceUniqueKey(SmcArguments &args) {
return LockSecurityEngineAndInvokeAsync(args, PrepareEsDeviceUniqueKeyImpl, GetPrepareEsDeviceUniqueKeyResult);
}
}