268 lines
8.7 KiB
C++
268 lines
8.7 KiB
C++
// Copyright 2017 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
#include <array>
|
|
#include "common/assert.h"
|
|
#include "common/bit_field.h"
|
|
#include "common/common_funcs.h"
|
|
#include "common/common_types.h"
|
|
|
|
namespace Pica {
|
|
|
|
struct PipelineRegs {
|
|
enum class VertexAttributeFormat : u32 {
|
|
BYTE = 0,
|
|
UBYTE = 1,
|
|
SHORT = 2,
|
|
FLOAT = 3,
|
|
};
|
|
|
|
struct {
|
|
BitField<1, 28, u32> base_address;
|
|
|
|
PAddr GetPhysicalBaseAddress() const {
|
|
return base_address * 16;
|
|
}
|
|
|
|
// Descriptor for internal vertex attributes
|
|
union {
|
|
BitField<0, 2, VertexAttributeFormat> format0; // size of one element
|
|
BitField<2, 2, u32> size0; // number of elements minus 1
|
|
BitField<4, 2, VertexAttributeFormat> format1;
|
|
BitField<6, 2, u32> size1;
|
|
BitField<8, 2, VertexAttributeFormat> format2;
|
|
BitField<10, 2, u32> size2;
|
|
BitField<12, 2, VertexAttributeFormat> format3;
|
|
BitField<14, 2, u32> size3;
|
|
BitField<16, 2, VertexAttributeFormat> format4;
|
|
BitField<18, 2, u32> size4;
|
|
BitField<20, 2, VertexAttributeFormat> format5;
|
|
BitField<22, 2, u32> size5;
|
|
BitField<24, 2, VertexAttributeFormat> format6;
|
|
BitField<26, 2, u32> size6;
|
|
BitField<28, 2, VertexAttributeFormat> format7;
|
|
BitField<30, 2, u32> size7;
|
|
};
|
|
|
|
union {
|
|
BitField<0, 2, VertexAttributeFormat> format8;
|
|
BitField<2, 2, u32> size8;
|
|
BitField<4, 2, VertexAttributeFormat> format9;
|
|
BitField<6, 2, u32> size9;
|
|
BitField<8, 2, VertexAttributeFormat> format10;
|
|
BitField<10, 2, u32> size10;
|
|
BitField<12, 2, VertexAttributeFormat> format11;
|
|
BitField<14, 2, u32> size11;
|
|
|
|
BitField<16, 12, u32> attribute_mask;
|
|
|
|
// number of total attributes minus 1
|
|
BitField<28, 4, u32> max_attribute_index;
|
|
};
|
|
|
|
VertexAttributeFormat GetFormat(std::size_t n) const {
|
|
VertexAttributeFormat formats[] = {format0, format1, format2, format3,
|
|
format4, format5, format6, format7,
|
|
format8, format9, format10, format11};
|
|
return formats[n];
|
|
}
|
|
|
|
u32 GetNumElements(std::size_t n) const {
|
|
u32 sizes[] = {size0, size1, size2, size3, size4, size5,
|
|
size6, size7, size8, size9, size10, size11};
|
|
return sizes[n] + 1;
|
|
}
|
|
|
|
u32 GetElementSizeInBytes(std::size_t n) const {
|
|
return (GetFormat(n) == VertexAttributeFormat::FLOAT)
|
|
? 4
|
|
: (GetFormat(n) == VertexAttributeFormat::SHORT) ? 2 : 1;
|
|
}
|
|
|
|
u32 GetStride(std::size_t n) const {
|
|
return GetNumElements(n) * GetElementSizeInBytes(n);
|
|
}
|
|
|
|
bool IsDefaultAttribute(std::size_t id) const {
|
|
return (id >= 12) || (attribute_mask & (1ULL << id)) != 0;
|
|
}
|
|
|
|
u32 GetNumTotalAttributes() const {
|
|
return max_attribute_index + 1;
|
|
}
|
|
|
|
// Attribute loaders map the source vertex data to input attributes
|
|
// This e.g. allows to load different attributes from different memory locations
|
|
struct {
|
|
// Source attribute data offset from the base address
|
|
BitField<0, 28, u32> data_offset;
|
|
|
|
union {
|
|
BitField<0, 4, u32> comp0;
|
|
BitField<4, 4, u32> comp1;
|
|
BitField<8, 4, u32> comp2;
|
|
BitField<12, 4, u32> comp3;
|
|
BitField<16, 4, u32> comp4;
|
|
BitField<20, 4, u32> comp5;
|
|
BitField<24, 4, u32> comp6;
|
|
BitField<28, 4, u32> comp7;
|
|
};
|
|
|
|
union {
|
|
BitField<0, 4, u32> comp8;
|
|
BitField<4, 4, u32> comp9;
|
|
BitField<8, 4, u32> comp10;
|
|
BitField<12, 4, u32> comp11;
|
|
|
|
// bytes for a single vertex in this loader
|
|
BitField<16, 8, u32> byte_count;
|
|
|
|
BitField<28, 4, u32> component_count;
|
|
};
|
|
|
|
u32 GetComponent(std::size_t n) const {
|
|
u32 components[] = {comp0, comp1, comp2, comp3, comp4, comp5,
|
|
comp6, comp7, comp8, comp9, comp10, comp11};
|
|
return components[n];
|
|
}
|
|
} attribute_loaders[12];
|
|
} vertex_attributes;
|
|
|
|
struct {
|
|
enum IndexFormat : u32 {
|
|
BYTE = 0,
|
|
SHORT = 1,
|
|
};
|
|
|
|
union {
|
|
BitField<0, 31, u32> offset; // relative to base attribute address
|
|
BitField<31, 1, IndexFormat> format;
|
|
};
|
|
} index_array;
|
|
|
|
// Number of vertices to render
|
|
u32 num_vertices;
|
|
|
|
enum class UseGS : u32 {
|
|
No = 0,
|
|
Yes = 2,
|
|
};
|
|
|
|
union {
|
|
BitField<0, 2, UseGS> use_gs;
|
|
BitField<31, 1, u32> variable_primitive;
|
|
};
|
|
|
|
// The index of the first vertex to render
|
|
u32 vertex_offset;
|
|
|
|
INSERT_PADDING_WORDS(0x3);
|
|
|
|
// These two trigger rendering of triangles
|
|
u32 trigger_draw;
|
|
u32 trigger_draw_indexed;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
// These registers are used to setup the default "fall-back" vertex shader attributes
|
|
struct {
|
|
// Index of the current default attribute
|
|
u32 index;
|
|
|
|
// Writing to these registers sets the "current" default attribute.
|
|
u32 set_value[3];
|
|
} vs_default_attributes_setup;
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
struct {
|
|
// There are two channels that can be used to configure the next command buffer, which can
|
|
// be then executed by writing to the "trigger" registers. There are two reasons why a game
|
|
// might use this feature:
|
|
// 1) With this, an arbitrary number of additional command buffers may be executed in
|
|
// sequence without requiring any intervention of the CPU after the initial one is
|
|
// kicked off.
|
|
// 2) Games can configure these registers to provide a command list subroutine mechanism.
|
|
|
|
// TODO: verify the bit length of these two fields
|
|
// According to 3dbrew, the bit length of them are 21 and 29, respectively
|
|
BitField<0, 20, u32> size[2]; ///< Size (in bytes / 8) of each channel's command buffer
|
|
BitField<0, 28, u32> addr[2]; ///< Physical address / 8 of each channel's command buffer
|
|
u32 trigger[2]; ///< Triggers execution of the channel's command buffer when written to
|
|
|
|
unsigned GetSize(unsigned index) const {
|
|
ASSERT(index < 2);
|
|
return 8 * size[index];
|
|
}
|
|
|
|
PAddr GetPhysicalAddress(unsigned index) const {
|
|
ASSERT(index < 2);
|
|
return (PAddr)(8 * addr[index]);
|
|
}
|
|
} command_buffer;
|
|
|
|
INSERT_PADDING_WORDS(4);
|
|
|
|
/// Number of input attributes to the vertex shader minus 1
|
|
BitField<0, 4, u32> max_input_attrib_index;
|
|
|
|
INSERT_PADDING_WORDS(1);
|
|
|
|
// The shader unit 3, which can be used for both vertex and geometry shader, gets its
|
|
// configuration depending on this register. If this is not set, unit 3 will share some
|
|
// configuration with other units. It is known that program code and swizzle pattern uploaded
|
|
// via regs.vs will be also uploaded to unit 3 if this is not set. Although very likely, it is
|
|
// still unclear whether uniforms and other configuration can be also shared.
|
|
BitField<0, 1, u32> gs_unit_exclusive_configuration;
|
|
|
|
enum class GPUMode : u32 {
|
|
Drawing = 0,
|
|
Configuring = 1,
|
|
};
|
|
|
|
GPUMode gpu_mode;
|
|
|
|
INSERT_PADDING_WORDS(0x4);
|
|
BitField<0, 4, u32> vs_outmap_total_minus_1_a;
|
|
INSERT_PADDING_WORDS(0x6);
|
|
BitField<0, 4, u32> vs_outmap_total_minus_1_b;
|
|
|
|
enum class GSMode : u32 {
|
|
Point = 0,
|
|
VariablePrimitive = 1,
|
|
FixedPrimitive = 2,
|
|
};
|
|
|
|
union {
|
|
BitField<0, 8, GSMode> mode;
|
|
BitField<8, 4, u32> fixed_vertex_num_minus_1;
|
|
BitField<12, 4, u32> stride_minus_1;
|
|
BitField<16, 4, u32> start_index;
|
|
} gs_config;
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
u32 variable_vertex_main_num_minus_1;
|
|
|
|
INSERT_PADDING_WORDS(0x9);
|
|
|
|
enum class TriangleTopology : u32 {
|
|
List = 0,
|
|
Strip = 1,
|
|
Fan = 2,
|
|
Shader = 3, // Programmable setup unit implemented in a geometry shader
|
|
};
|
|
|
|
BitField<8, 2, TriangleTopology> triangle_topology;
|
|
|
|
u32 restart_primitive;
|
|
|
|
INSERT_PADDING_WORDS(0x20);
|
|
};
|
|
|
|
static_assert(sizeof(PipelineRegs) == 0x80 * sizeof(u32), "PipelineRegs struct has incorrect size");
|
|
|
|
} // namespace Pica
|